skip to main content


Title: Effective Leptophilic WIMPs at the e+e− collider
A bstract We consider higher-dimensional effective (EFT) operators consisting of fermion dark matter (DM) connecting to Standard Model (SM) leptons upto dimension six. Considering all operators together and assuming the DM to undergo thermal freeze-out, we find out relic density allowed parameter space in terms of DM mass ( m χ ) and New Physics (NP) scale (Λ) with one loop direct search constraints from XENON1T experiment. Allowed parameter space of the model is probed at the proposed International Linear Collider (ILC) via monophoton signal for both Dirac and Majorana cases, limited by the centre-of-mass energy $$ \sqrt{s} $$ s =1 TeV, where DM mass can be probed within $$ {m}_{\chi }<\frac{\sqrt{s}}{2} $$ m χ < s 2 for the pair production to occur and Λ > $$ \sqrt{s} $$ s for the validity of EFT framework.  more » « less
Award ID(s):
1915093
NSF-PAR ID:
10379619
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
4
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract The identity of Dark Matter (DM) is one of the most active topics in particle physics today. Supersymmetry (SUSY) is an extension of the standard model (SM) that could describe the particle nature of DM in the form of the lightest neutralino in R-parity conserving models. We focus on SUSY models that solve the hierarchy problem with small fine tuning, and where the lightest SUSY particles $$ \left({\tilde{\upchi}}_1^0,{\tilde{\upchi}}_1^{\pm },{\tilde{\upchi}}_2^0\right) $$ χ ˜ 1 0 χ ˜ 1 ± χ ˜ 2 0 are a triplet of higgsino-like states, such that the mass difference $$ \Delta m\left({\tilde{\upchi}}_2^0,{\tilde{\upchi}}_1^0\right) $$ Δ m χ ˜ 2 0 χ ˜ 1 0 is 0.5–50 GeV. We perform a feasibility study to assess the long-term discovery potential for these compressed SUSY models with higgsino-like states, using vector boson fusion (VBF) processes in the context of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, at the CERN Large Hadron Collider. Assuming an integrated luminosity of 3000 fb − 1 , we find that stringent VBF requirements, combined with large missing momentum and one or two low- p T leptons, is effective at reducing the major SM backgrounds, leading to a 5 σ (3 σ ) discovery reach for $$ m\left({\tilde{\upchi}}_2^0\right) $$ m χ ˜ 2 0 < 180 (260) GeV, and a projected 95% confidence level exclusion region that covers $$ m\left({\tilde{\upchi}}_2^0\right) $$ m χ ˜ 2 0 up to 385 GeV, parameter space that is currently unconstrained by other experiments. 
    more » « less
  2. A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies. 
    more » « less
  3. A bstract In the electroweak sector of the Standard Model, CP violation arises through a very particular interplay between the three quark generations, as described by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism and the single Jarlskog invariant J 4 . Once generalized to the Standard Model Effective Field Theory (SMEFT), this peculiar pattern gets modified by higher-dimensional operators, whose associated Wilson coefficients are usually split into CP-even and odd parts. However, CP violation at dimension four, i.e., at the lowest order in the EFT expansion, blurs this distinction: any Wilson coefficient can interfere with J 4 and mediate CP violation. In this paper, we study such interferences at first order in the SMEFT expansion, 𝒪(1 / Λ 2 ), and we capture their associated parameter space via a set of 1551 linear CP-odd flavor invariants. This construction describes both new, genuinely CP-violating quantities as well as the interference between J 4 and CP-conserving ones. We call this latter possibility opportunistic CP violation . Relying on an appropriate extension of the matrix rank to Taylor expansions, which we dub Taylor rank , we define a procedure to organize the invariants in terms of their magnitude, so as to retain only the relevant ones at a given precision. We explore how this characterization changes when different assumptions are made on the flavor structure of the SMEFT coefficients. Interestingly, some of the CP-odd invariants turn out to be less suppressed than J 4 , even when they capture opportunistic CPV, demonstrating that CP-violation in the SM, at dimension 4, is accidentally small. 
    more » « less
  4. A bstract A search for supersymmetry in events with two or three low-momentum leptons and missing transverse momentum is performed. The search uses proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV collected in the three-year period 2016–2018 by the CMS experiment at the LHC and corresponding to an integrated luminosity of up to 137 fb − 1 . The data are found to be in agreement with expectations from standard model processes. The results are interpreted in terms of electroweakino and top squark pair production with a small mass difference between the produced supersymmetric particles and the lightest neutralino. For the electroweakino interpretation, two simplified models are used, a wino-bino model and a higgsino model. Exclusion limits at 95% confidence level are set on $$ {\overset{\sim }{\upchi}}_2^0/{\overset{\sim }{\upchi}}_1^{\pm } $$ χ ~ 2 0 / χ ~ 1 ± masses up to 275 GeV for a mass difference of 10 GeV in the wino-bino case, and up to 205(150) GeV for a mass difference of 7.5 (3) GeV in the higgsino case. The results for the higgsino are further interpreted using a phenomenological minimal supersymmetric standard model, excluding the higgsino mass parameter μ up to 180 GeV with the bino mass parameter M 1 at 800 GeV. In the top squark interpretation, exclusion limits are set at top squark masses up to 540 GeV for four-body top squark decays and up to 480 GeV for chargino-mediated decays with a mass difference of 30 GeV. 
    more » « less
  5. A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy. 
    more » « less