Single flux density measurements at observed-frame submillimeter and millimeter wavelengths are commonly used to probe dust and gas masses in galaxies. In this Letter, we explore the robustness of this method to infer dust mass, focusing on quiescent galaxies, using a series of controlled experiments on four massive halos from the Feedback in Realistic Environments project. Our starting point is four star-forming central galaxies at seven redshifts between
- Publication Date:
- NSF-PAR ID:
- 10379708
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 939
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. L27
- ISSN:
- 2041-8205
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT The infrared (IR) spectral energy distributions (SEDs) of main-sequence galaxies in the early Universe (z > 4) is currently unconstrained as IR continuum observations are time-consuming and not feasible for large samples. We present Atacama Large Millimetre Array Band 8 observations of four main-sequence galaxies at z ∼ 5.5 to study their IR SED shape in detail. Our continuum data (rest-frame 110 $\rm \mu m$, close to the peak of IR emission) allows us to constrain luminosity-weighted dust temperatures and total IR luminosities. With data at longer wavelengths, we measure for the first time the emissivity index at these redshifts to provide more robust estimates of molecular gas masses based on dust continuum. The Band 8 observations of three out of four galaxies can only be reconciled with optically thin emission redward of rest-frame $100\, {\rm \mu m}$. The derived dust peak temperatures at z ∼ 5.5 ($30\!-\!43\, {\rm K}$) are elevated compared to average local galaxies, however, $\sim 10\, {\rm K}$ below what would be predicted from an extrapolation of the trend at z < 4. This behaviour can be explained by decreasing dust abundance (or density) towards high redshifts, which would cause the IR SED at the peakmore »
-
Context. Recent years have seen building evidence that planet formation starts early, in the first ~0.5 Myr. Studying the dust masses available in young disks enables us to understand the origin of planetary systems given that mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. Aims. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. Methods. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 (1.1–1.3 mm) continuum observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka -band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities measured in the image plane. Results. We find a strong linear correlation between the ALMA and VLA fluxes, demonstrating that emission at both wavelengths is dominated by dust emission. For a subsample of optically thin sources, we find a median spectral index of 2.5 from which we derive the dust opacity index β = 0.5, suggesting significant dust growth. Comparison with ALMA surveys of Orion shows that the Class I dust disk massmore »
-
ABSTRACT We present the first detailed study of the spatially resolved dust continuum emission of simulated galaxies at 1 < z < 5. We run the radiative transfer code skirt on a sample of submillimetre-bright galaxies drawn from the Feedback In Realistic Environments (FIRE) project. These simulated galaxies reach Milky Way masses by z = 2. Our modelling provides predictions for the full rest-frame far-ultraviolet-to-far-infrared spectral energy distributions of these simulated galaxies, as well as 25-pc resolution maps of their emission across the wavelength spectrum. The derived morphologies are notably different in different wavebands, with the same galaxy often appearing clumpy and extended in the far-ultraviolet yet an ordered spiral at far-infrared wavelengths. The observed-frame 870-$\mu$m half-light radii of our FIRE-2 galaxies are ${\sim} 0.5\rm {-}4\, \rm {kpc}$, consistent with existing ALMA observations of galaxies with similarly high redshifts and stellar masses. In both simulated and observed galaxies, the dust continuum emission is generally more compact than the cold gas and the dust mass, but more extended than the stellar component. The most extreme cases of compact dust emission seem to be driven by particularly compact recent star formation, which generates steep dust temperature gradients. Our results confirm that the spatial extent of the dust continuummore »
-
Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8). When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGsmore »
-
Abstract Characterizing the physical conditions at disk scales in class 0 sources is crucial for constraining the protostellar accretion process and the initial conditions for planet formation. We use ALMA 1.3 and 3 mm observations to investigate the physical conditions of the dust around the class 0 binary IRAS 16293–2422 A down to ∼10 au scales. The circumbinary material’s spectral index,
α , has a median of 3.1 and a dispersion of ∼0.2, providing no firm evidence of millimeter-sized grains therein. Continuum substructures with brightness temperature peaks ofT b∼ 60–80 K at 1.3 mm are observed near the disks at both wavelengths. These peaks do not overlap with strong variations ofα , indicating that they trace high-temperature spots instead of regions with significant optical depth variations. The lower limits to the inferred dust temperature in the hot spots are 122, 87, and 49 K. Depending on the assumed dust opacity index, these values can be several times higher. They overlap with high gas temperatures and enhanced complex organic molecular emission. This newly resolved dust temperature distribution is in better agreement with the expectations from mechanical instead of the most commonly assumed radiative heating. In particular, we find that the temperatures agree with shock heatingmore »