skip to main content


Title: One-loop matching for quark dipole operators in a gradient-flow scheme
A bstract The quark chromoelectric dipole (qCEDM) operator is a CP-violating operator describing, at hadronic energies, beyond-the-standard-model contributions to the electric dipole moment of particles with nonzero spin. In this paper we define renormalized dipole operators in a regularization-independent scheme using the gradient flow, and we perform the matching at one loop in perturbation theory to renormalized operators of the same and lower dimension in the more familiar MS scheme. We also determine the matching coefficients for the quark chromo-magnetic dipole operator (qCMDM), which contributes for example to matrix elements relevant to CP-violating and CP-conserving kaon decays. The calculation provides a basis for future lattice QCD computations of hadronic matrix elements of the qCEDM and qCMDM operators.  more » « less
Award ID(s):
1913287
NSF-PAR ID:
10379965
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
4
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there have been rapid developments in lattice-QCD calculations of proton structure, especially in the parton distribution functions (PDFs). We overcame a longstanding obstacle and for the first time in lattice-QCD are able to directly calculate the Bjorken- x dependence of the quark, helicity and transversity distributions. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken- x dependence of finite-momentum PDFs, called “quasi-PDFs”, can be calculated on the lattice. The quasi-PDF nucleon matrix elements are renormalized non-perturbatively in RI/MOM-scheme. Following a nonperturbative renormalization of the parton quasi-distribution in a regularization-independent momentum-subtraction scheme, we establish its matching to the $ \overline {{\rm{MS}}} $ PDF and calculate the non-singlet matching coefficient at next-to-leading order in perturbation theory. In this proceeding, I will show the progress that has been made in recent years, highlighting the latest state-of-the art PDF calculations at the physical pion mass. Future impacts on the large- x global PDF fits are also discussed. 
    more » « less
  2. A bstract In the electroweak sector of the Standard Model, CP violation arises through a very particular interplay between the three quark generations, as described by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism and the single Jarlskog invariant J 4 . Once generalized to the Standard Model Effective Field Theory (SMEFT), this peculiar pattern gets modified by higher-dimensional operators, whose associated Wilson coefficients are usually split into CP-even and odd parts. However, CP violation at dimension four, i.e., at the lowest order in the EFT expansion, blurs this distinction: any Wilson coefficient can interfere with J 4 and mediate CP violation. In this paper, we study such interferences at first order in the SMEFT expansion, 𝒪(1 / Λ 2 ), and we capture their associated parameter space via a set of 1551 linear CP-odd flavor invariants. This construction describes both new, genuinely CP-violating quantities as well as the interference between J 4 and CP-conserving ones. We call this latter possibility opportunistic CP violation . Relying on an appropriate extension of the matrix rank to Taylor expansions, which we dub Taylor rank , we define a procedure to organize the invariants in terms of their magnitude, so as to retain only the relevant ones at a given precision. We explore how this characterization changes when different assumptions are made on the flavor structure of the SMEFT coefficients. Interestingly, some of the CP-odd invariants turn out to be less suppressed than J 4 , even when they capture opportunistic CPV, demonstrating that CP-violation in the SM, at dimension 4, is accidentally small. 
    more » « less
  3. A bstract We perform a model-independent analysis of the magnetic and electric dipole moments of the muon and electron. We give expressions for the dipole moments in terms of operator coefficients of the low-energy effective field theory (LEFT) and the Standard Model effective field theory (SMEFT). We use one-loop renormalization group improved perturbation theory, including the one-loop matching from SMEFT onto LEFT, and one-loop lepton matrix elements of the effective-theory operators. Semileptonic four-fermion operators involving light quarks give sizable non-perturbative contributions to the dipole moments, which are included in our analysis. We find that only a very limited set of the SMEFT operators is able to generate the current deviation of the magnetic moment of the muon from its Standard Model expectation. 
    more » « less
  4. A<sc>bstract</sc>

    Results are presented on a search for CP violation in the production and decay of top quark-antiquark pairs in the lepton+jets channel. The search is based on data from proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV, collected with the CMS detector, corresponding to an integrated luminosity of 138 fb1. Possible CP violation effects are evaluated by measuring asymmetries in observables constructed from linearly independent four-momentum vectors of the final-state particles. The dimensionless chromoelectric dipole moment of the top quark obtained from the observed asymmetries is measured to be 0.04 ± 0.10 (stat) ± 0.07(syst), and the asymmetries exhibit no evidence for CP-violating effects, consistent with expectations from the standard model.

     
    more » « less
  5. Abstract

    We present a state-of-the-art calculation of the unpolarized pion valence-quark distribution in the framework of large-momentum effective theory (LaMET) with improved handling of systematic errors as well as two-loop perturbative matching. We use lattice ensembles generated by the MILC collaboration at lattice spacinga≈ 0.09 fm, lattice volume 643× 96,Nf= 2 + 1 + 1 flavors of highly-improved staggered quarks and a physical pion mass. The LaMET matrix elements are calculated with pions boosted to momentumPz≈ 1.72 GeV with high-statistics ofO(106) measurements. We study the pion PDF in both hybrid-ratio and hybrid-regularization-independent momentum subtraction (hybrid-RI/MOM) schemes and also compare the systematic errors with and without the addition of leading-renormalon resummation (LRR) and renormalization-group resummation (RGR) in both the renormalization and lightcone matching. The final lightcone PDF results are presented in the modified minimal-subtraction scheme at renormalization scaleμ= 2.0 GeV. We show that thex-dependent PDFs are compatible between the hybrid-ratio and hybrid-RI/MOM renormalization with the same improvements. We also show that systematics are greatly reduced by the simultaneous inclusion of RGR and LRR and that these methods are necessary if improved precision is to be reached with higher-order terms in renormalization and matching.

     
    more » « less