skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-term climate indices (SPEI and scPDSI) derived from monthly meteorology data collected at USHCN stations in the northern Chihuahuan Desert of the United States, 1911-2021
Drought indices — Standardized Precipitation Evapotranspiration Index (SPEI) and the self-calibrating Palmer Drought Severity Index (scPDSI) —where derived from 9 United States Historical Climate Network (USHCN) stations on the Chihuahuan Desert in North America for this dataset. USHCN is a subset of the NOAA Cooperative Observer Program (COOP) Network, which consists of selected sites based on spatial coverages and completeness of data. Monthly precipitation depths, minimum, maximum and mean temperature were pulled from the dataset. These drought indices were derived using the SPEI package and scPDSI packages in R. Potential evapotranspiration was also calculated in R using the Thornthwaite method. All 9 sites are within the bounds of the Chihuahuan Desert in the state of New Mexico, with a single site (EL PASO) in the state of Texas.  more » « less
Award ID(s):
2025166
PAR ID:
10380086
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Standardized Precipitation Evapotranspiration Index (SPEI) and minimum, maximum, and average vapor pressure deficit (VPD) were calculated from meteorological data (temperature, precipitation, and relative humidity) from the 15 net primary production (NPP) study locations on the Jornada Experimental Range (JER) and the Chihuahuan Desert Rangeland Research Center (CDRRC) lands in southern New Mexico, U.S.A. 
    more » « less
  2. Abstract Droughts are a natural hazard of growing concern as they are projected to increase in frequency and severity for many regions of the world. The identification of droughts and their future characteristics is essential to building an understanding of the geography and magnitude of potential drought change trajectories, which in turn is critical information to manage drought resilience across multiple sectors and disciplines. Adding to this effort, we developed a dataset of global historical and projected future drought indices over the 1980–2100 period based on downscaled CMIP6 models across multiple shared socioeconomic pathways (SSP). The dataset is composed of two indices: the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) for 23 downscaled global climate models (GCMs) (0.25-degree resolution), including historical (1980–2014) and future projections (2015–2100) under four climate scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The drought indices were calculated for 3-, 6- and 12-month accumulation timescales and are available as gridded spatial datasets in a regular latitude-longitude format at monthly time resolution. 
    more » « less
  3. Background. Since the mid-20th century, massive dieback of coniferous forests has been observed in the temperate and boreal zones across North America and Northern Eurasia. The first hypotheses explaining forest dieback were associated with industrial air pollution (acid rain). At the end of the century, new hypotheses emerged that supported critical climate-induced aridization to explain forest dieback. Many studies were based on the SPEI (Standardized Precipitation Evapotranspiration Index) drought index. Our goals were to investigate if the SPEI drought index was a suitable metric to reflect drought conditions in wet and moist dark-needled forests in the South Siberian Mountains (Mts) and if droughts trigger the dieback of those forests. Methods. We calculated the SPEI drought index, the annual moisture index AMI, potential evapotranspiration PET, and water balance dynamics for the period 1961–2019 for four transects in the South Siberian Mts. where decline/dieback of dark-needled Siberian pine and fir forests were identified in situ. Climate data from nine weather stations located at lower and upper elevations of each transect were used to calculate climatic index dynamics for the 1961–2019 period to identify dry and wet phases of the period. Results. Our findings showed that climatic moisture/dryness indices have rarely gone down to high risk levels during the last 60 years (1961–2019). AMI did not reach the critical limit, 2.25, characteristic of the lower border for the dark-needled taiga. SPEI values < −1.5 represent drought stress conditions for dark-needled conifers at the lower border, and these conditions occurred 3–4 times during the 60-year period. However, the annual water balance stayed positive in those years in wet and moist forests at mid-to-high elevations. Trees are known to survive occasional (1–2) dry years. We found that dark-needled conifer dieback often occurs in wet years with plentiful rain rather than in drought years. We found forest dieback was associated with the westerlies that bring atmospheric pollution from the west at 50–56 N latitudes, where the air masses cross populated regions that have widespread industrial complexes. Conclusions. We concluded that the observed decline of dark-needled conifers at middle-to-high elevations across South Siberia’s Mts was conditioned by several plausible causes, among which air pollution seems to be more credible than dry climatic conditions, as cited in the literature. Results are essential for understanding these ecosystems and others as our planet changes. Other causes and mechanisms should be further investigated, which would necessitate creating infrastructure that supports the teamwork of plant physiologists, foresters, chemists, etc. 
    more » « less
  4. Abstract The long‐term hydroclimatic variability in Santiago (Chile) was analysed by means of a new 481‐year (1536–2016 CE) tree‐ring reconstruction of the Standardized Precipitation Evapotranspiration Index (SPEI) of August, integrating the hydroclimatic conditions during the preceding 14 months. Results show a high frequency of extreme drought events in the late 20th and early 21st centuries, while the frequency of extreme wet events was higher in the 17th–18th centuries. The mid‐20th century represents a breaking point for the hydroclimatic history in the region, including some significant changes: (a) the interannual variability increased; (b) the wet events became less intense; (c) the extreme dry events became more frequent; and (d) the most intense dry event of the entire period was identified, coinciding with the so‐called Megadrought (2006–2016). A correlation analysis between the reconstructed SPEI and three climate indices (PDO, SOI and Niño3.4) was performed at monthly scale, considering different multi‐annual aggregations. The analysis shows diverse impacts on the hydroclimatic variability, with positive correlations between SPEI and PDO as well as Niño3.4, and negative correlations between SPEI and SOI. The most significant correlations were, overall, found at multi‐annual time scales (>7 years). Results help to better understand the current hydroclimatic changes (Megadrought) in a long‐term context. 
    more » « less
  5. Abstract Drylands are highly vulnerable to climate change due to their fragile ecosystems and limited ability to adapt. In contrast to the global drying after tropical volcanic eruptions shown previously, we demonstrate that large tropical volcanic eruptions can induce significant two-year hydroclimatic wetting over drylands by employing the last millennium simulations. During this wetting period, which extends from the first to the third boreal winter after the eruption, several hydroclimatic indicators, such as self-calibrating Palmer Drought Severity Index based on the Penman-Monteith equation for potential evapotranspiration (scPDSIpm), standard precipitation evapotranspiration index (SPEI), aridity index (AI), top-10cm soil moisture (SM10cm), and leaf area index (LAI), show significant positive anomalies over most drylands. The primary contribution to the wetting response is the potential evapotranspiration (PET) reduction resulting from dryland surface cooling and reduced solar radiation, as well as a weak contribution from increased precipitation. The latter is due to the wind convergence into drylands caused by slower tropical cooling compared to drylands. The wetting response of drylands to volcanic eruptions also demonstrates some benefits over the global hydrological slowdown resulting from stratospheric aerosol injection, which replicates the cooling effects of volcanic eruptions to address global warming. 
    more » « less