Virtual site visits are increasingly becoming a viable educational tool for educators to supplement or replace traditional visits when these are challenged by logistical issues, inaccessibility, or safety hazards. Recent research has explored the integration of theory-based learning strategies, such as collaborative problem-solving and multimedia learning, in online construction site visits to support construction students’ collaborative skill development and learning effectiveness. However, there remains a lack of understanding of how to guide students systematically from conceptual knowledge to more complex, hands-on, or procedural knowledge, which often leads to a fragmented learning experience in current online site visit designs. This study aims to integrate active learning approaches (i.e., systematic learning progression) into online site visits to facilitate students’ development of situated knowledge. In this project, a collaborative online site visit focused on building mechanical systems was created, where students worked in pairs to achieve four specific learning objectives, progressing from conceptual to procedural knowledge regarding building mechanical systems. The findings provide insights into the integration of systematic learning progression within virtual collaborative spaces for online site visits and demonstrate the effectiveness of such site visits in supporting students’ situated knowledge.
more »
« less
Virtual Collaborative Spaces for Online Site Visits: A Plan-Reading Pilot Study
Site visits or field trips are widely recognized by construction educators to engage students in active learning, supplement traditional lessons, and achieve better student learning experiences. However, site visits pose significant logistical and accessibility challenges for educational institutions and teachers, limiting the number of students who can benefit from them. Moreover, the restrictions on site visits have widened recently, as the reality of COVID-19 public health concerns have compelled instructors to fast-transition to online course delivery, canceling most site visits. The purpose of this study is to present construction students with online site visits to supplement contextualized learning in risky, unsafe, or impossible-to-achieve situations. In this project, Mozilla Hubs® was used to establish a virtual collaborative environment that resembled a real-world site visit to a building facility. A pilot study (i.e., a plan-reading assessment) was employed within the virtual environment that provided affordances involving an in-depth learning experience through collaborative communication. The findings demonstrate that virtual collaborative site visits give unique chances to deliver spatiotemporal contexts of sites online and provide an effective remote alternative when these learning opportunities are unavailable.
more »
« less
- Award ID(s):
- 1821852
- PAR ID:
- 10380207
- Date Published:
- Journal Name:
- EPiC Series in Built Environment
- Volume:
- 3
- ISSN:
- 2632-881X
- Page Range / eLocation ID:
- 688 to 678
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The reality of COVID-19 public health concerns and increasing demand for distance education have forced educators to move to online delivery of their courses. Particularly in construction education, the majority of physical location-based educational activities (e.g., labs, site visits, or field trips) have been canceled during the pandemic that results in reducing students’ engagement, learning motivation, and cognitive achievement. Virtual Social Spaces (VSS) with innovative interaction affordances and immersive experience are well poised to supplement current online construction education. This paper discusses the potentials of VSS for construction education while focusing on the common applications of VSS, the communication and collaboration affordances of VSS, and design principles of this technology based on 15 popular VSS platforms. Overall, VSS applications are mainly found in education, entertainment, and socializing. The main communication and collaboration affordances of VSS include avatars, multi-user support, asynchronous commenting, synchronous chat, and visual-sharing affordances. These technical features illustrate the potentials of VSS for improving online construction education quality, eliminating the challenges associated with geographical dispersion of students, and decreasing the students’ lack of engagement.more » « less
-
Effective communication is essential for students in construction management and relevant fields. Nevertheless, very little emphasis on communication practices has been placed in the construction management curriculum, and limited communication skills are still widely found among students. Ideal construction site visits not only supplement traditional learning in the classrooms but also provide opportunities to communicate with professionals onsite. However, challenges exist that limit the application of site visits and ultimately reduce such opportunities to practice communication skills with experts on the jobsites. This research aims to help overcome the barriers by proposing a novel approach that leverages 360-degree digital sites with virtual human as conversational partners on site (iVisit-Communicate). In this paper, the design and development processes of iVisit-Communicate were described in detail, followed by a case study of its implementation on a digital site visit to a mechanical room. It was found that most students agreed that iVisit-Communicate provided them an opportunity to practice communication skills.more » « less
-
Traditional lectures have difficulties instilling pragmatic skills in construction engineering students due to the inability to illuminate the complexities within the human-robot collaborative construction environment. While on-site can acclimatize construction students to reality and construct knowledge that can solve safety challenges, it is challenging to organize on-site training trips owing to the dangerous nature of construction workplaces. This research aimed to explore virtual reality (VR) as a tool to enhance students’ perception and knowledge of construction robotic safety. For this purpose, the study developed a virtual training platform for providing construction engineering students with safety knowledge on interacting with simulated robots within the virtual environment of construction sites. A self-assessment approach was leveraged among 20 recruited students to demonstrate the efficacy of students’ engagement and learning outcomes from the proposed learning approach over the traditional learning approach. Results indicated a statistical difference in students’ learning outcomes and engagement levels between the developed approach and the traditional approach. Findings demonstrated the implications of VR as an experiential tool to enhance the students’ learning of robotic safety in construction.more » « less
-
null (Ed.)Site visits or field trips are an integral part of construction management education, providing students with experiential learning of jobsite conditions. However, these types of real-world opportunities are difficult to obtain within the current educational framework based on classroom instruction. To expose students to jobsite spatiotemporal contexts (spatial, temporal, or social situations), field trips must be organized at locations that are often inaccessible, dangerous, or expensive to reach. To address field trip barriers, this research proposes the use of iVisit—a proof-of-concept platform for guided interactive site visits that leverages 360-degree panoramas and virtual humans. In this paper, the technical requirements for the creation of digital site visit experiences and resulting educational platform are explained in detail. Additionally, a pilot study was conducted to assess the iVisit platform in terms of usability, presence, and student knowledge gains. A masonry materials’ site visit learning experience was designed and tested with 10 participants at introductory level construction courses. It was found that students perceived the iVisit guided tour as easy to use (SUS Usability Score – Mean = 86%; STD = 8.8%) and highly realistic (SUS Presence Score – Mean = 68.4%; STD = 14.4%). However, students answer approximately one-third of the presented knowledge questions correctly (Student Knowledge Score – Mean = 31.7%; STD = 25%). These outcomes in student knowledge gains were linked to low image quality in the 360-degree captures and augmented pictures within the digital site. Supporting feedback provided by the study participants suggested that future improvements to iVisit require higher image quality and some refinements to its user-interfaces to increase presence and knowledge gains.more » « less
An official website of the United States government

