skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: 2+ δ ‐Dimensional Materials via Atomistic Z‐Welding
Abstract

Pivotal to functional van der Waals stacked flexible electronic/excitonic/spintronic/thermoelectric chips is the synergy amongst constituent layers. However; the current techniques viz. sequential chemical vapor deposition, micromechanical/wet‐chemical transfer are mostly limited due to diffused interfaces, and metallic remnants/bubbles at the interface. Inter‐layer‐coupled 2+δ‐dimensional materials, as a new class of materials can be significantly suitable for out‐of‐plane carrier transport and hence prompt response in prospective devices. Here, the discovery of the use of exotic electric field ≈106 V cm1(at microwave hot‐spot) and 2 thermomechanical conditions i.e. pressure ≈1 MPa, T ≈ 200 °C (during solvothermal reaction) to realize 2+δ‐dimensional materials is reported. It is found that PzPzchemical bonds form between the component layers, e.g., CB and CN in G‐BN, MoN and MoB in MoS2‐BN hybrid systems as revealed by X‐ray photoelectron spectroscopy. New vibrational peaks in Raman spectra (BC ≈1320 cm–1for the G‐BN system and MoB ≈365 cm–1for the MoS2‐BN system) are recorded. Tunable mid‐gap formation, along with diodic behavior (knee voltage ≈0.7 V, breakdown voltage ≈1.8 V) in the reduced graphene oxide‐reduced BN oxide (RGO‐RBNO) hybrid system is also observed. Band‐gap tuning in MoS2‐BN system is observed. Simulations reveal stacking‐dependent interfacial charge/potential drops, hinting at the feasibility of next‐generation functional devices/sensors.

 
more » « less
PAR ID:
10380283
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
32
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ferroelectric (FE) devices are conventionally switched by an application of an electric field. However, the recent discoveries of light–matter interactions in heterostructures based on 2D semiconductors and FE materials open new opportunities for using light as an additional tool for device programming. Recently, a purely optical switching of FE polarization in heterostructures comprising 2D MoS2and FE oxide perovskites, such as BaTiO3and Pb(Zr,Ti)O3(PZT), was demonstrated. In this work, it is investigated whether this optical switching has a practical value and can be used to improve functional characteristics of MoS2‐PZT FE field‐effect transistors for nonvolatile memory applications. It is demonstrated that the combined use of an electrical field and visible light improves the nonvolatile ON/OFF ratios in MoS2‐PZT memories by several orders of magnitude compared to their purely electrical operation. The memories are read at zero gate voltage (VG) in darkness, but their ON and OFF currents, which routinely varied for different devices by over 105, are achieved by programming at the sameVG = −6 V with (ON state) and without (OFF state) light illumination, demonstrating its crucial importance. The light can likely serve as an important tool for better programming of a large variety of other semiconductor‐FE devices.

     
    more » « less
  2. Abstract

    The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec−1at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2as the channel, the SnSe/MoS2vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltageVPof −0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec−1and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.

     
    more » « less
  3. Large area (1 mm2) vertical NiO/βn-Ga2O/n+Ga2O3heterojunction rectifiers are demonstrated with simultaneous high breakdown voltage and large conducting currents. The devices showed breakdown voltages (VB) of 3.6 kV for a drift layer doping of 8 × 1015cm−3, with 4.8 A forward current. This performance is higher than the unipolar 1D limit for GaN, showing the promise ofβ-Ga2O3for future generations of high-power rectification devices. The breakdown voltage was a strong function of drift region carrier concentration, with VBdropping to 1.76 kV for epi layer doping of 2 × 1016cm−3. The power figure-of-merit, VB2/RON, was 8.64 GW·cm−2, where RONis the on-state resistance (1.5 mΩ cm2). The on-off ratio switching from 12 to 0 V was 2.8 × 1013, while it was 2 × 1012switching from 100 V. The turn-on voltage was 1.8 V. The reverse recovery time was 42 ns, with a reverse recovery current of 34 mA.

     
    more » « less
  4. Abstract

    The intercalation of layered compounds opens up a vast space of new host–guest hybrids, providing new routes for tuning the properties of materials. Here, it is shown that uniform and continuous layers of copper can be intercalated within the van der Waals gap of bulk MoS2resulting in a unique Cu–MoS2hybrid. The new Cu–MoS2hybrid, which remains semiconducting, possesses a unique plasmon resonance at an energy of ≈1eV, giving rise to enhanced optoelectronic activity. Compared with high‐performance MoS2photodetectors, copper‐enhanced devices are superior in their spectral response, which extends into the infrared, and also in their total responsivity, which exceeds 104A W−1. The Cu–MoS2hybrids hold promise for supplanting current night‐vision technology with compact, advanced multicolor night vision.

     
    more » « less
  5. Abstract

    The large‐area synthesis of high‐quality MoS2plays an important role in realizing industrial applications of optoelectronics, nanoelectronics, and flexible devices. However, current techniques for chemical vapor deposition (CVD)‐grown MoS2require a high synthetic temperature and a transfer process, which limits its utilization in device fabrications. Here, the direct synthesis of high‐quality monolayer MoS2with the domain size up to 120 µm by metal‐organic CVD (MOCVD) at a temperature of 320 °C is reported. Owing to the low‐substrate temperature, the MOCVD‐grown MoS2exhibits low impurity doping and nearly unstrained properties on the growth substrate, demonstrating enhanced electronic performance with high electron mobility of 68.3 cm2V−1s−1at room temperature. In addition, by tuning the precursor ratio, a better understanding of the MoS2growth process via a geometric model of the MoS2flake shape, is developed, which can provide further guidance for the synthesis of 2D materials.

     
    more » « less