skip to main content


Title: 2+ δ ‐Dimensional Materials via Atomistic Z‐Welding
Abstract

Pivotal to functional van der Waals stacked flexible electronic/excitonic/spintronic/thermoelectric chips is the synergy amongst constituent layers. However; the current techniques viz. sequential chemical vapor deposition, micromechanical/wet‐chemical transfer are mostly limited due to diffused interfaces, and metallic remnants/bubbles at the interface. Inter‐layer‐coupled 2+δ‐dimensional materials, as a new class of materials can be significantly suitable for out‐of‐plane carrier transport and hence prompt response in prospective devices. Here, the discovery of the use of exotic electric field ≈106 V cm1(at microwave hot‐spot) and 2 thermomechanical conditions i.e. pressure ≈1 MPa, T ≈ 200 °C (during solvothermal reaction) to realize 2+δ‐dimensional materials is reported. It is found that PzPzchemical bonds form between the component layers, e.g., CB and CN in G‐BN, MoN and MoB in MoS2‐BN hybrid systems as revealed by X‐ray photoelectron spectroscopy. New vibrational peaks in Raman spectra (BC ≈1320 cm–1for the G‐BN system and MoB ≈365 cm–1for the MoS2‐BN system) are recorded. Tunable mid‐gap formation, along with diodic behavior (knee voltage ≈0.7 V, breakdown voltage ≈1.8 V) in the reduced graphene oxide‐reduced BN oxide (RGO‐RBNO) hybrid system is also observed. Band‐gap tuning in MoS2‐BN system is observed. Simulations reveal stacking‐dependent interfacial charge/potential drops, hinting at the feasibility of next‐generation functional devices/sensors.

 
more » « less
NSF-PAR ID:
10380283
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
32
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ferroelectric (FE) devices are conventionally switched by an application of an electric field. However, the recent discoveries of light–matter interactions in heterostructures based on 2D semiconductors and FE materials open new opportunities for using light as an additional tool for device programming. Recently, a purely optical switching of FE polarization in heterostructures comprising 2D MoS2and FE oxide perovskites, such as BaTiO3and Pb(Zr,Ti)O3(PZT), was demonstrated. In this work, it is investigated whether this optical switching has a practical value and can be used to improve functional characteristics of MoS2‐PZT FE field‐effect transistors for nonvolatile memory applications. It is demonstrated that the combined use of an electrical field and visible light improves the nonvolatile ON/OFF ratios in MoS2‐PZT memories by several orders of magnitude compared to their purely electrical operation. The memories are read at zero gate voltage (VG) in darkness, but their ON and OFF currents, which routinely varied for different devices by over 105, are achieved by programming at the sameVG = −6 V with (ON state) and without (OFF state) light illumination, demonstrating its crucial importance. The light can likely serve as an important tool for better programming of a large variety of other semiconductor‐FE devices.

     
    more » « less
  2. Abstract

    The device concept of ferroelectric-based negative capacitance (NC) transistors offers a promising route for achieving energy-efficient logic applications that can outperform the conventional semiconductor technology, while viable operation mechanisms remain a central topic of debate. In this work, we report steep slope switching in MoS2transistors back-gated by single-layer polycrystalline PbZr0.35Ti0.65O3. The devices exhibit current switching ratios up to 8 × 106within an ultra-low gate voltage window of$$V_{{{\mathrm{g}}}} = \pm \! 0.5$$Vg=±0.5V and subthreshold swing (SS) as low as 9.7 mV decade−1at room temperature, transcending the 60 mV decade−1Boltzmann limit without involving additional dielectric layers. Theoretical modeling reveals the dominant role of the metastable polar states within domain walls in enabling the NC mode, which is corroborated by the relation between SS and domain wall density. Our findings shed light on a hysteresis-free mechanism for NC operation, providing a simple yet effective material strategy for developing low-power 2D nanoelectronics.

     
    more » « less
  3.  
    more » « less
  4. Abstract

    Quasi‐2D hybrid halide perovskites have drawn considerable attention due to their improved stability and facile tunability compared to 3D perovskites. The expansiveness of possibilities has thus far been limited by the difficulty in incorporating large ligands into thin‐film devices. Here, a bulky bi‐thiophene 2T ligand is focused on to develop a solvent system around creating strongly vertically‐aligned (2T)2(MA)6Pb7I22(n = 7) quasi‐2D perovskite films. By starting with a poorly coordinating solvent (gamma‐butyrolactone) and adding a small amount of dimethylsulfoxide and methanol, it is found that vertical orientation andz‐uniformity is greatly improved. These are carefully examined and verified using grazing‐incidence wide‐angle X‐ray scattering analysis and advanced optical characterizations. These films are incorporated into champion solar cells that achieve a power conversion efficiency of 13.3%, with a short‐circuit current density of 18.9 mA cm‐2, an open‐circuit voltage of 0.96 V, and a fill factor of 73.8%. Furthermore, the quasi‐2D absorbing layers show excellent stability in moisture, remaining unchanged after hundreds of hours. In addition, 2T is compared with the more common ligands butylammonium and phenylethylammonium in this solvent system to develop heuristics and deeper understanding of how to incorporate large ligands into stable photovoltaic devices.

     
    more » « less
  5. Molybdenum sulfide (MoS2) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER) owing to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the number of active sites in MoS2. In this work, a simple method of fabricating polycrystalline multilayer MoS2on Mo foil for efficient hydrogen evolution is demonstrated by controlling the sulfur (S) vacancy concentration, which can introduce new bands and lower the hydrogen adsorption free energy (ΔGH). For the first time, theoretical and experimental results show that the HER performance of synthesized MoS2with S vacancy can be further enhanced by the very small amount of platinum (Pt) decoration, which can introduce new gap states and more catalytic sites in real space with suitable free energy. The fabricated hybrid electrocatalyst exhibits significantly smaller Tafel slope of 38 mV dec−1and better HER electrocatalytic activity compared to previous works. This approach provides a simple pathway to design low‐cost, efficient and sizable hydrogen‐evolving electrode by simultaneously tuning the MoS2band structure and active sites.

     
    more » « less