skip to main content

Title: An approximate likelihood for nuclear recoil searches with XENON1T data
Abstract The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure.  more » « less
Award ID(s):
1913105 1719286 1719270 2112801 2112802 2112803 2112851
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The European Physical Journal C
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the$$^{222}$$222Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a$$^{222}$$222Rn activity concentration of$$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$10μBq/kgin$$3.2\,\mathrm{t}$$3.2tof xenon. The knowledge of the distribution of the$$^{222}$$222Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the$$^{222}$$222Rn activity concentration in XENON1T. The final$$^{222}$$222Rn activity concentration of$$(4.5\pm 0.1)\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$(4.5±0.1)μBq/kgin the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.

    more » « less
  2. Abstract A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360±60)ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fit to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove 37Ar after its injection for a low energy calibration in XENON1T. This makes the usage of 37Ar as a regular calibration source possible in the future. The online distillation can be applied to next-generation LXe TPC experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large scale detectors. 
    more » « less
  3. Abstract The field of dark matter detection is a highly visible and highly competitive one. In this paper, we propose recommendations for presenting dark matter direct detection results particularly suited for weak-scale dark matter searches, although we believe the spirit of the recommendations can apply more broadly to searches for other dark matter candidates, such as very light dark matter or axions. To translate experimental data into a final published result, direct detection collaborations must make a series of choices in their analysis, ranging from how to model astrophysical parameters to how to make statistical inferences based on observed data. While many collaborations follow a standard set of recommendations in some areas, for example the expected flux of dark matter particles (to a large degree based on a paper from Lewin and Smith in 1995), in other areas, particularly in statistical inference, they have taken different approaches, often from result to result by the same collaboration. We set out a number of recommendations on how to apply the now commonly used Profile Likelihood Ratio method to direct detection data. In addition, updated recommendations for the Standard Halo Model astrophysical parameters and relevant neutrino fluxes are provided. The authors of this note include members of the DAMIC, DarkSide, DARWIN, DEAP, LZ, NEWS-G, PandaX, PICO, SBC, SENSEI, SuperCDMS, and XENON collaborations, and these collaborations provided input to the recommendations laid out here. Wide-spread adoption of these recommendations will make it easier to compare and combine future dark matter results. 
    more » « less
  4. null (Ed.)
    Abstract Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above $$\sim $$ ∼ 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $$^{136} \hbox {Xe}$$ 136 Xe at its Q value, $$Q_{\beta \beta }\simeq 2.46\,\hbox {MeV}$$ Q β β ≃ 2.46 MeV . For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at $$1\,\sigma /\mu $$ 1 σ / μ is as low as ( $$0.80 \pm 0.02$$ 0.80 ± 0.02 ) % in its one-ton fiducial mass, and for single-site interactions at $$Q_{\beta \beta }$$ Q β β . We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events. 
    more » « less
  5. Two-neutrino double electron capture (2νECEC) is a second-order Weak process with predictedhalf-lives that surpass the age of the Universe by many orders of magnitude [1]. Until now, indi-cations for 2νECEC decays have only been seen for two isotopes,78Kr [2, 3] and130Ba [4, 5], andinstruments with very low background levels are needed to detect them directly with high statisticalsignificance [6, 7]. The 2νECEC half-life provides an important input for nuclear structure models[8–14] and its measurement represents a first step in the search for the neutrinoless double electroncapture processes (0νECEC). A detection of the latter would have implications for the nature of theneutrino and give access to the absolute neutrino mass [15–17]. Here we report on the first directobservation of 2νECEC in124Xe with the XENON1T Dark Matter detector. The significance of thesignal is 4.4σand the corresponding half-lifeT2νECEC1/2= (1.8±0.5stat±0.1sys)×1022y is the longestever measured directly. This study demonstrates that the low background and large target massof xenon-based Dark Matter detectors make them well suited to measuring other rare processes aswell, and it highlights the broad physics reach for even larger next-generation experiments 
    more » « less