skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2112803

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) can tag neutrons via their capture on gadolinium or hydrogen, which release$$\gamma $$ γ -rays that are subsequently detected as Cherenkov light. In this work, we present the first results of the XENONnT NV when operated with demineralized water only, before the insertion of gadolinium. Its efficiency for detecting neutrons is$$({82\pm 1}){\%}$$ ( 82 ± 1 ) % , the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of$$({53\pm 3}){\%}$$ ( 53 ± 3 ) % for the tagging of WIMP-like neutron signals, inside a tagging time window of$${250}~{\upmu }\hbox {s}$$ 250 μ s between TPC and NV, leading to a livetime loss of$${1.6}{\%}$$ 1.6 % during the first science run of XENONnT. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run. 
    more » « less
  3. Abstract The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to$${}^{83\textrm{m}}\hbox {Kr }$$ 83 m Kr calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages. 
    more » « less
  4. Abstract Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$ 40 t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$ 0 ν β β ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$ 137 Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$ 0 ν β β of$${}^{136}$$ 136 Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background. 
    more » « less
  5. Abstract The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. 
    more » « less
  6. The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Because of extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of ( 15.8 ± 1.3 ) events / ( tonne · year · keV ) in the (1,30) keV region is reached in the inner part of the time projection chamber. XENONnT is, thus, sensitive to a wide range of rare phenomena related to dark matter and neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of dark matter in the form of weakly interacting massive particles. From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne · year . This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the “blind analysis” methodology we are using when reporting XENONnT physics results. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. We search for dark matter (DM) with a mass [ 3 , 12 ] GeV / c 2 using an exposure of 3.51 tonne year with the XENONnT experiment. We consider spin-independent DM-nucleon interactions mediated by a heavy or light mediator, spin-dependent DM-neutron interactions, momentum-dependent DM scattering, and mirror DM. Using a lowered energy threshold compared to the previous weakly interacting massive particle search, a blind analysis of [0.5, 5.0] keV nuclear recoil events reveals no significant signal excess over the background. XENONnT excludes spin-independent DM-nucleon cross sections > 2.5 × 10 45 cm 2 at 90% confidence level for 6 GeV / c 2 DM. In the considered mass range, the DM sensitivity approaches the “neutrino fog,” the limitation where neutrinos produce a signal that is indistinguishable from that of light DM-xenon nucleus scattering. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  8. We present the first measurement of nuclear recoils from solar B 8 neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t × yr resulted in 37 observed events above 0.5 keV, with ( 26.4 1.3 + 1.4 ) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 σ . The measured B 8 solar neutrino flux of ( 4.7 2.3 + 3.6 ) × 10 6 cm 2 s 1 is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE ν NS cross section on Xe of ( 1.1 0.5 + 0.8 ) × 10 39 cm 2 is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  9. This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using Rn 222 and Po 218 events, and the rms convection speed was measured to be 0.30 ± 0.01 cm / s . Given this velocity field, Pb 214 background events can be tagged when they are followed by Bi 214 and Po 214 decays, or preceded by Po 218 decays. This was achieved by evolving a point cloud in the direction of a measured convection velocity field, and searching for Bi 214 and Po 214 decays or Po 218 decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a Pb 214 background reduction of 6.2 0.9 + 0.4 % with an exposure loss of 1.8 ± 0.2 % , despite the timescales of convection being smaller than the relevant decay times. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic Xe 137 background, which is relevant to the search for neutrinoless double-beta decay. Published by the American Physical Society2024 
    more » « less
  10. Low-background liquid xenon detectors are utilized in the investigation of rare events, including dark matter and neutrinoless double beta decay. For their calibration, gaseous 220Rn can be used. After being introduced into the xenon, its progeny isotope 212Pb induces homogeneously distributed, low-energy (<30 keV) electronic recoil interactions. We report on the characterization of such a source for use in the XENONnT experiment. It consists of four commercially available 228Th sources with an activity of 55 kBq. These sources provide a high 220Rn emanation rate of about 8 kBq. We find no indication for the release of the long-lived 228Th above 1.7 mBq. Though an unexpected 222Rn emanation rate of about 3.6 mBq is observed, this source is still in line with the requirements for the XENONnT experiment. 
    more » « less