skip to main content

Title: Revealing nonlinear neural decoding by analyzing choices
Abstract Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. The neurons that encode these relevant signals typically constitute a nonlinear population code. Here we present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information. Our theory obeys fundamental mathematical limitations on information content inherited from the sensory periphery, describing redundant codes when there are many more cortical neurons than primary sensory neurons. The theory predicts that if the brain uses its nonlinear population codes optimally, then more informative patterns should be more correlated with choices. More specifically, the theory predicts a simple, easily computed quantitative relationship between fluctuating neural activity and behavioral choices that reveals the decoding efficiency. This relationship holds for optimal feedforward networks of modest complexity, when experiments are performed under natural nuisance variation. We analyze recordings from primary visual cortex of monkeys discriminating the distribution from which oriented stimuli were drawn, and find these data are consistent with the hypothesis of near-optimal nonlinear decoding.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Sponsoring Org:
National Science Foundation
More Like this
  1. A major goal in neuroscience is to understand the relationship between an animal’s behavior and how this is encoded in the brain. Therefore, a typical experiment involves training an animal to perform a task and recording the activity of its neurons – brain cells – while the animal carries out the task. To complement these experimental results, researchers “train” artificial neural networks – simplified mathematical models of the brain that consist of simple neuron-like units – to simulate the same tasks on a computer. Unlike real brains, artificial neural networks provide complete access to the “neural circuits” responsible for a behavior, offering a way to study and manipulate the behavior in the circuit. One open issue about this approach has been the way in which the artificial networks are trained. In a process known as reinforcement learning, animals learn from rewards (such as juice) that they receive when they choose actions that lead to the successful completion of a task. By contrast, the artificial networks are explicitly told the correct action. In addition to differing from how animals learn, this limits the types of behavior that can be studied using artificial neural networks. Recent advances in the field of machinemore »learning that combine reinforcement learning with artificial neural networks have now allowed Song et al. to train artificial networks to perform tasks in a way that mimics the way that animals learn. The networks consisted of two parts: a “decision network” that uses sensory information to select actions that lead to the greatest reward, and a “value network” that predicts how rewarding an action will be. Song et al. found that the resulting artificial “brain activity” closely resembled the activity found in the brains of animals, confirming that this method of training artificial neural networks may be a useful tool for neuroscientists who study the relationship between brains and behavior. The training method explored by Song et al. represents only one step forward in developing artificial neural networks that resemble the real brain. In particular, neural networks modify connections between units in a vastly different way to the methods used by biological brains to alter the connections between neurons. Future work will be needed to bridge this gap.« less
  2. Many theories assume that a sensory neuron’s higher firing rate indicates a greater probability of its preferred stimulus. However, this contradicts 1) the adaptation phenomena where prolonged exposure to, and thus increased probability of, a stimulus reduces the firing rates of cells tuned to the stimulus; and 2) the observation that unexpected (low probability) stimuli capture attention and increase neuronal firing. Other theories posit that the brain builds predictive/efficient codes for reconstructing sensory inputs. However, they cannot explain that the brain preserves some information while discarding other. We propose that in sensory areas, projection neurons’ firing rates are proportional to optimal code length (i.e., negative log estimated probability), and their spike patterns are the code, for useful features in inputs. This hypothesis explains adaptation-induced changes of V1 orientation tuning curves, and bottom-up attention. We discuss how the modern minimum-description-length (MDL) principle may help understand neural codes. Because regularity extraction is relative to a model class (defined by cells) via its optimal universal code (OUC), MDL matches the brain’s purposeful, hierarchical processing without input reconstruction. Such processing enables input compression/understanding even when model classes do not contain true models. Top-down attention modifies lower-level OUCs via feedback connections to enhance transmission ofmore »behaviorally relevant information. Although OUCs concern lossless data compression, we suggest possible extensions to lossy, prefix-free neural codes for prompt, online processing of most important aspects of stimuli while minimizing behaviorally relevant distortion. Finally, we discuss how neural networks might learn MDL’s normalized maximum likelihood (NML) distributions from input data.« less
  3. Many daily activities and psychophysical experiments involve keeping multiple items in working memory. When items take continuous values (e.g., orientation, contrast, length, loudness) they must be stored in a continuous structure of appropriate dimensions. We investigate how this structure is represented in neural circuits by training recurrent networks to report two previously shown stimulus orientations. We find the activity manifold for the two orientations resembles a Clifford torus. Although a Clifford and standard torus (the surface of a donut) are topologically equivalent, they have important functional differences. A Clifford torus treats the two orientations equally and keeps them in orthogonal subspaces, as demanded by the task, whereas a standard torus does not. We find and characterize the connectivity patterns that support the Clifford torus. Moreover, in addition to attractors that store information via persistent activity, our networks also use a dynamic code where units change their tuning to prevent new sensory input from overwriting the previously stored one. We argue that such dynamic codes are generally required whenever multiple inputs enter a memory system via shared connections. Finally, we apply our framework to a human psychophysics experiment in which subjects reported two remembered orientations. By varying the training conditions ofmore »the RNNs, we test and support the hypothesis that human behavior is a product of both neural noise and reliance on the more stable and behaviorally relevant memory of the ordinal relationship between the two orientations. This suggests that suitable inductive biases in RNNs are important for uncovering how the human brain implements working memory. Together, these results offer an understanding of the neural computations underlying a class of visual decoding tasks, bridging the scales from human behavior to synaptic connectivity.« less
  4. Abstract Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons.
  5. Abstract

    Our brains continuously acquire sensory information and make judgments even when visual information is limited. In some circumstances, an ambiguous object can be recognized from how it moves, such as an animal hopping or a plane flying overhead. Yet it remains unclear how movement is processed by brain areas involved in visual object recognition. Here we investigate whether inferior temporal (IT) cortex, an area known for its relevance in visual form processing, has access to motion information during recognition. We developed a matching task that required monkeys to recognize moving shapes with variable levels of shape degradation. Neural recordings in area IT showed that, surprisingly, some IT neurons responded stronger to degraded shapes than clear ones. Furthermore, neurons exhibited motion sensitivity at different times during the presentation of the blurry target. Population decoding analyses showed that motion patterns could be decoded from IT neuron pseudo-populations. Contrary to previous findings, these results suggest that neurons in IT can integrate visual motion and shape information, particularly when shape information is degraded, in a way that has been previously overlooked. Our results highlight the importance of using challenging multifeature recognition tasks to understand the role of area IT in naturalistic visual objectmore »recognition.

    « less