skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Automated patient-robot assignment for a robotic rehabilitation gym: a simplified simulation model
Abstract Background

A robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome.

Methods

As a first step toward implementing a practical patient-robot assignment system, we present a simplified mathematical model of a robotic rehabilitation gym. Mixed-integer nonlinear programming algorithms are used to find effective assignment and training solutions for multiple evaluation scenarios involving different numbers of patients and robots (5 patients and 5 robots, 6 patients and 5 robots, 5 patients and 7 robots), different training durations (7 or 12 time steps) and different complexity levels (whether different patients have different skill acquisition curves, whether robots have exit times associated with them). In all cases, the goal is to maximize total skill gain across all patients and skills within a session.

Results

Analyses of variance across different scenarios show that disjunctive and time-indexed optimization models significantly outperform two baseline schedules: staying on one robot throughout a session and switching robots halfway through a session. The disjunctive model results in higher skill gain than the time-indexed model in the given scenarios, and the optimization duration increases as the number of patients, robots and time steps increases. Additionally, we discuss how different model simplifications (e.g., perfectly known and predictable patient skill level) could be addressed in the future and how such software may eventually be used in practice.

Conclusions

Though it involves unrealistically simple scenarios, our study shows that intelligently moving patients between different rehabilitation robots can improve overall skill acquisition in a multi-patient multi-robot environment. While robotic rehabilitation gyms are not yet commonplace in clinical practice, prototypes of them already exist, and our study presents a way to use intelligent decision support to potentially enable more efficient delivery of technologically aided rehabilitation.

 
more » « less
Award ID(s):
2024813
PAR ID:
10380511
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
19
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background:

    Technology has the potential to prevent patient falls in healthcare settings and to reduce work-related injuries among healthcare providers. However, the usefulness and acceptability of each technology requires careful evaluation. Framed by the Technology Acceptance Model (TAM) and using the Adaptive Robotic Nursing Assistant (ARNA) to assist with patient ambulation, the present study examined the perceived usefulness of robots in patients’ fall prevention with implications for preventing associated work-related injuries among healthcare providers.

    Methods:

    Employing an experimental design, subjects were undergraduate nursing students ( N = 38) and one external subject (not a nursing student) who played the role of the patient. Procedures included subjects ambulating a simulated patient in three ways: (a) following the practice of a nurse assisting a patient to walk with the patient wearing a gait belt; (b) an ARNA-assisted process with the gait belt attached to ARNA; (c) an ARNA-assisted process with a subject walking a patient wearing a harness that is attached to ARNA. Block randomization was used with the following experimental scenarios: Gait Belt (human with a gait belt), “ARNA + Gait Belt” (a robot with a gait belt), and “ARNA + Harness” (a robot with a harness). Descriptive statistics and a multiple regression model were used to analyze the data and compare the outcome described as the Perceived Usefulness (PU) of a robot for patient walking versus a human “nurse assistant” without a robot. The independent variables included the experimental conditions of “Gait Belt,” “ARNA + Gait Belt,” and “ARNA + Harness,” the subject’s age, race, and previous videogame playing experience.

    Findings:

    Results indicated that PU was significantly higher in the Gait Belt + ARNA and Harness + ARNA conditions than in the Gait Belt condition ( p-value <.01 for both variables). In examining potential influencing factors, the effects of race (White, African American, and Asian), age, and previous video-playing experience were not statistically significant ( p-value >.05).

    Discussion:

    Results demonstrated that using robot technology to assist in walking patients was perceived by subjects as more useful in preventing falls than the gait belt. Patient fall prevention also has implications for preventing associated work-related injuries among healthcare providers.

    Implications:

    Understanding the effects of a subject’s perceptions can guide further development of assistive robots in patient care. Robotic engineers and interdisciplinary teams can design robots to accommodate worker characteristics and individual differences to improve worker safety and reduce work injuries.

     
    more » « less
  2. null (Ed.)
    ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the same domain; whereas in the domain-transfer scenario, the training data are a blend of simulated and real robot data, which are tested on a real robot. Results Using simulation data to train the learning algorithms enhances the performance on the real robot where limited or no real data are available. The transfer model showed an accuracy of 81% for the YuMi robot when the ratio of real-tosimulated data were 22% to 78%. For the Taurus II and the da Vinci, the model showed an accuracy of 97.5% and 93%, respectively, training only with simulation data. Conclusions The results indicate that simulation can be used to augment training data to enhance the performance of learned models in real scenarios. This shows potential for the future use of surgical data from the operating room in deployable surgical robots in remote areas. 
    more » « less
  3. Background

    The incidence of stroke and stroke-related hemiparesis has been steadily increasing and is projected to become a serious social, financial, and physical burden on the aging population. Limited access to outpatient rehabilitation for these stroke survivors further deepens the healthcare issue and estranges the stroke patient demographic in rural areas. However, new advances in motion detection deep learning enable the use of handheld smartphone cameras for body tracking, offering unparalleled levels of accessibility.

    Methods

    In this study we want to develop an automated method for evaluation of a shortened variant of the Fugl-Meyer assessment, the standard stroke rehabilitation scale describing upper extremity motor function. We pair this technology with a series of machine learning models, including different neural network structures and an eXtreme Gradient Boosting model, to score 16 of 33 (49%) Fugl-Meyer item activities.

    Results

    In this observational study, 45 acute stroke patients completed at least 1 recorded Fugl-Meyer assessment for the training of the auto-scorers, which yielded average accuracies ranging from 78.1% to 82.7% item-wise.

    Conclusion

    In this study, an automated method was developed for the evaluation of a shortened variant of the Fugl-Meyer assessment, the standard stroke rehabilitation scale describing upper extremity motor function. This novel method is demonstrated with potential to conduct telehealth rehabilitation evaluations and assessments with accuracy and availability.

     
    more » « less
  4. null (Ed.)
    Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures. 
    more » « less
  5. Using robots capable of collaboration with humans to complete physical tasks in unstructured spaces is a rapidly growing approach to work. Particular examples where increased levels of automation can increase productivity include robots used as nursing assistants. In this paper, we present a mobile manipulator designed to serve as an assistant to nurses in patient walking and patient sitting tasks in hospital environments. The Adaptive Robotic Nursing Assistant (ARNA) robot consists of an omnidirectional base with an instrumented handlebar, and a 7-DOF robotic arm. We describe its components and the novelties in its mechanisms and instrumentation. Experiments with human subjects that gauge the usability and ease of use of the ARNA robot in a medical environment indicate that the robot will get significant actual usage, and are used as a basis for a discussion on how the robot's features facilitate its adaptability for use in other scenarios and environment. 
    more » « less