The elliptic flow
The quantification of microstructural properties to optimize battery design and performance, to maintain product quality, or to track the degradation of LIBs remains expensive and slow when performed through currently used characterization approaches. In this paper, a convolution neural network-based deep learning approach (CNN) is reported to infer electrode microstructural properties from the inexpensive, easy to measure cell voltage versus capacity data. The developed framework combines two CNN models to balance the bias and variance of the overall predictions. As an example application, the method was demonstrated against porous electrode theory-generated voltage versus capacity plots. For the graphite|LiMn
- NSF-PAR ID:
- 10380548
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract of$$(v_2)$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0}$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$${\textrm{D}}^{0})$$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ from their hadronic decay$$(|y|<0.8)$$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ GeV/$$2< p_{\textrm{T}} < 12$$ c . The result indicates a positive for non-prompt$$v_2$$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ . The non-prompt$$\sigma $$ -meson$${{\textrm{D}}^{0}}$$ is lower than that of prompt non-strange D mesons with 3.2$$v_2$$ significance in$$\sigma $$ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$ -
Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H
O and D$$_2$$ O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$_2$$ , isothermal compressibility$$\rho (T)$$ , and self-diffusion coefficients$$\kappa _T(T)$$ D (T ) of H O and D$$_2$$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$_2$$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$C_P(T)$$ O and D$$_2$$ O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ O and D$$_2$$ O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ O, from PIMD simulations, is located at$$_2$$ MPa,$$P_c = 167 \pm 9$$ K, and$$T_c = 159 \pm 6$$ g/cm$$\rho _c = 1.02 \pm 0.01$$ . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$^3$$ O is estimated to be$$_2$$ MPa,$$P_c = 176 \pm 4$$ K, and$$T_c = 177 \pm 2$$ g/cm$$\rho _c = 1.13 \pm 0.01$$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$^3$$ MPa,$$P_c = 203 \pm 4$$ K, and$$T_c = 175 \pm 2$$ g/cm$$\rho _c = 1.03 \pm 0.01$$ ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$^3$$ for D$$T_c$$ O and, particularly, H$$_2$$ O suggest that improved water models are needed for the study of supercooled water.$$_2$$ -
Abstract We propose a new observable for the measurement of the forward–backward asymmetry
in Drell–Yan lepton production. At hadron colliders, the$$(A_{FB})$$ distribution is sensitive to both the electroweak (EW) fundamental parameter$$A_{FB}$$ , the weak mixing angle, and the parton distribution functions (PDFs). Hence, the determination of$$\sin ^{2} \theta _{W}$$ and the updating of PDFs by directly using the same$$\sin ^{2} \theta _{W}$$ spectrum are strongly correlated. This correlation would introduce large bias or uncertainty into both precise measurements of EW and PDF sectors. In this article, we show that the sensitivity of$$A_{FB}$$ on$$A_{FB}$$ is dominated by its average value around the$$\sin ^{2} \theta _{W}$$ Z pole region, while the shape (or gradient) of the spectrum is insensitive to$$A_{FB}$$ and contains important information on the PDF modeling. Accordingly, a new observable related to the gradient of the spectrum is introduced, and demonstrated to be able to significantly reduce the potential bias on the determination of$$\sin ^{2} \theta _{W}$$ when updating the PDFs using the same$$\sin ^{2} \theta _{W}$$ data.$$A_{FB}$$ -
Abstract Consider two half-spaces
and$$H_1^+$$ in$$H_2^+$$ whose bounding hyperplanes$${\mathbb {R}}^{d+1}$$ and$$H_1$$ are orthogonal and pass through the origin. The intersection$$H_2$$ is a spherical convex subset of the$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ d -dimensional unit sphere , which contains a great subsphere of dimension$${\mathbb {S}}^d$$ and is called a spherical wedge. Choose$$d-2$$ n independent random points uniformly at random on and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$${\mathbb {S}}_{2,+}^d$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$$\log n$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.$${\mathbb {S}}_{2,+}^d$$ -
Abstract Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,
, comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$g \mu _B B$$ for the$$\nu$$ minimum, e.g., from$$R_{xx}$$ to$$\nu = 11/7$$ , and a corresponding change in the$$\nu = 8/5$$ , e.g., from$$R_{xy}$$ to$$R_{xy}/R_{K} = (11/7)^{-1}$$ , with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$R_{xy}/R_{K} = (8/5)^{-1}$$ and$$\nu = 4/3$$ resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$\nu = 7/5$$ at the$$R_{xy}$$ minima- the latter occurring for$$R_{xx}$$ and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu = 4/3, 7/5$$ and$$\nu$$ , but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.$$R_{xy}$$