skip to main content


Title: Monotonic Increase of Extreme Precipitation Intensity With Temperature When Controlled for Saturation Deficit
Abstract

Past studies based on univariate scaling analyses at the weather time scale documented a negative scaling of extreme precipitation intensity (EPI), which prevents EPI extrapolation from past climate. Here we present a bivariate scaling analysis and show that, contrary to the univariate scaling results, EPI monotonically increases with temperature and shows no negative scaling when controlled for saturation deficit. The observed EPI‐temperature relationship in saturated atmosphere is surprisingly similar among different regions and closely follows the Clausius‐Clapeyron scaling; climate models produce greater regional dependence of the scaling relationship with a wide range of scaling rate. For extratropical regions, the model‐simulated EPI‐temperature relationship under saturation shows a past‐to‐future continuity, which could potentially support extrapolation to a warmer climate. The scaling at saturation bridges the EPI‐temperature relationship between weather and climate time scales and may enable potential prediction of future precipitation extremes via extrapolation from past observations.

 
more » « less
Award ID(s):
1659953
NSF-PAR ID:
10381074
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although the intensity of extreme precipitation is predicted to increase with climate warming, at the weather scale precipitation extremes over most of the globe decrease when temperature exceeds a certain threshold, and the spatial extent of this negative scaling is projected to increase as the climate warms. The nature and cause of the negative scaling at high temperature and its implications remain poorly understood. Based on sub-daily data from observations, reanalysis data, and output from a coarse-resolution (∼200 km) global model and a fine-resolution (4 km) convection-permitting regional model, we show that the negative scaling is primarily a reflection of high temperature suppressing precipitation over land and storm-induced temperature variation over the ocean. We further identify the high temperature-induced increase of saturation deficit as a critical condition for the negative scaling of extreme precipitation over land. Large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation. The heat-induced suppression of precipitation, both for its mean and extremes, provides one mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land is expected to increase in a warmer climate, our results imply a growing prevalence of negative scaling, potentially increasing the frequency of compound drought and heat events. Understanding the physical mechanisms underlying the negative scaling of precipitation at high temperature is, therefore, essential for assessing future risks of extreme events, including not only flood due to extreme precipitation but also drought and heatwaves. 
    more » « less
  2. Abstract

    The terrestrial carbon sink provides a critical negative feedback to climate warming, yet large uncertainty exists on its long‐term dynamics. Here we combined terrestrial biosphere models (TBMs) and climate projections, together with climate‐specific land use change, to investigate both the trend and interannual variability (IAV) of the terrestrial carbon sink from 1986 to 2099 under two representative concentration pathways RCP2.6 and RCP6.0. The results reveal a saturation of the terrestrial carbon sink by the end of this century under RCP6.0 due to warming and declined CO2effects. Compared to 1986–2005 (0.96 ± 0.44 Pg C yr−1), during 2080–2099 the terrestrial carbon sink would decrease to 0.60 ± 0.71 Pg C yr−1but increase to 3.36 ± 0.77 Pg C yr−1, respectively, under RCP2.6 and RCP6.0. The carbon sink caused by CO2, land use change and climate change during 2080–2099 is −0.08 ± 0.11 Pg C yr−1, 0.44 ± 0.05 Pg C yr−1, and 0.24 ± 0.70 Pg C yr−1under RCP2.6, and 4.61 ± 0.17 Pg C yr−1, 0.22 ± 0.07 Pg C yr−1, and ‐1.47 ± 0.72 Pg C yr−1under RCP6.0. In addition, the carbon sink IAV shows stronger variance under RCP6.0 than RCP2.6. Under RCP2.6, temperature shows higher correlation with the carbon sink IAV than precipitation in most time, which however is the opposite under RCP6.0. These results suggest that the role of terrestrial carbon sink in curbing climate warming would be weakened in a no‐mitigation world in future, and active mitigation efforts are required as assumed under RCP2.6.

     
    more » « less
  3. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes draining year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

     
    more » « less
  4. Downscaling coarse global and regional climate models allows researchers to access weather and climate data at finer temporal and spatial resolution, but there remains a need to compare these models with empirical data sources to assess model accuracy. Here, we validate a widely used software for generating North American downscaled climate data, ClimateNA, with a novel empirical data source, 20th century weather journals kept by Admiralty Island, Alaska homesteader, Allen Hasselborg. Using Hasselborg’s journals, we calculated monthly precipitation and monthly mean of the maximum daily air temperature across the years 1926 to 1954 and compared these to ClimateNA data generated from the Hasselborg homestead location and adjacent areas. To demonstrate the utility and potential implications of this validation for other disciplines such as hydrology, we used an established regression equation to generate time series of 95% low duration flow estimates for the month of August using mean annual precipitation from ClimateNA predictions and Hasselborg data. Across 279 months, we found strong correlation between modeled and observed measurements of monthly precipitation ( ρ  = 0.74) and monthly mean of the maximum daily air temperature ( ρ  = 0.98). Monthly precipitation residuals (calculated as ClimateNA data - Hasselborg data) generally demonstrated heteroscedasticity around zero, but a negative trend in residual values starting during the last decade of observations may have been due to a shift to the cold-phase Pacific Decadal Oscillation. Air temperature residuals demonstrated a consistent but small positive bias, with ClimateNA tending to overestimate air temperature relative to Hasselborg’s journals. The degree of correlation between weather patterns observed at the Hasselborg homestead site and ClimateNA data extracted from spatial grid cells across the region varied by wet and dry climate years. Monthly precipitation from both data sources tended to be more similar across a larger area during wet years (mean ρ across grid cells = 0.73) compared to dry years (mean ρ across grid cells = 0.65). The time series of annual 95% low duration flow estimates for the month of August generated using ClimateNA and Hasselborg data were moderately correlated ( ρ  = 0.55). Our analysis supports previous research in other regions which also found ClimateNA to be a robust source for past climate data estimates. 
    more » « less
  5. Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon ( 14 C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14 C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14 C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks. 
    more » « less