skip to main content


Title: IMO^3: Interactive Multi-Objective Off-Policy Optimization
Most real-world optimization problems have multiple objectives. A system designer needs to find a policy that trades off these objectives to reach a desired operating point. This problem has been studied extensively in the setting of known objective functions. However, we consider a more practical but challenging setting of unknown objective functions. In industry, optimization under this setting is mostly approached with online A/B testing, which is often costly and inefficient. As an alternative, we propose Interactive Multi-Objective Off-policy Optimization (IMO^3). The key idea of IMO^3 is to interact with a system designer using policies evaluated in an off-policy fashion to uncover which policy maximizes her unknown utility function. We theoretically show that IMO^3 identifies a near-optimal policy with high probability, depending on the amount of designer's feedback and training data for off-policy estimation. We demonstrate its effectiveness empirically on several multi-objective optimization problems.  more » « less
Award ID(s):
2128019 2007492 1553568
NSF-PAR ID:
10381231
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22
Page Range / eLocation ID:
3523 to 3529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study an unmanned-aerial-vehicle (UAV) based full-duplex (FD) multi-user communication network, where a UAV is deployed as a multiple-input–multiple-output (MIMO) FD base station (BS) to serve multiple FD users on the ground. We propose a multi-objective optimization framework which considers two desirable objective functions, namely sum uplink (UL) rate maximization and sum downlink (DL) rate maximization while providing quality-of-service to all the users in the communication network. A novel resource allocation multi-objective-optimization-problem (MOOP) is designed which optimizes the downlink beamformer, the beamwidth angle, and the 3D position of the UAV, and also the UL power of the FD users. The formulated MOOP is a non-convex problem which is generally intractable. To handle the MOOP, a weighted Tchebycheff method is proposed, which converts the problem to the single-objective-optimization-problem (SOOP). Further, an alternative optimization approach is used, where SOOP is converted in to multiple sub-problems and optimization variables are operated alternatively. The numerical results show a trade-off region between sum UL and sum DL rate, and also validate that the considered FD system provides substantial improvement over traditional HD systems. 
    more » « less
  2. The design of machine learning systems often requires trading off different objectives, for example, prediction error and energy consumption for deep neural networks (DNNs). Typically, no single design performs well in all objectives; therefore, finding Pareto-optimal designs is of interest. The search for Pareto-optimal designs involves evaluating designs in an iterative process, and the measurements are used to evaluate an acquisition function that guides the search process. However, measuring different objectives incurs different costs. For example, the cost of measuring the prediction error of DNNs is orders of magnitude higher than that of measuring the energy consumption of a pre-trained DNN as it requires re-training the DNN. Current state-of-the-art methods do not consider this difference in objective evaluation cost, potentially incurring expensive evaluations of objective functions in the optimization process. In this paper, we develop a novel decoupled and cost-aware multi-objective optimization algorithm, which we call Flexible Multi-Objective Bayesian Optimization (FlexiBO) to address this issue. For evaluating each design, FlexiBO selects the objective with higher relative gain by weighting the improvement of the hypervolume of the Pareto region with the measurement cost of each objective. This strategy, therefore, balances the expense of collecting new information with the knowledge gained through objective evaluations, preventing FlexiBO from performing expensive measurements for little to no gain. We evaluate FlexiBO on seven state-of-the-art DNNs for image recognition, natural language processing (NLP), and speech-to-text translation. Our results indicate that, given the same total experimental budget, FlexiBO discovers designs with 4.8% to 12.4% lower hypervolume error than the best method in state-of-the-art multi-objective optimization. 
    more » « less
  3. Restless multi-armed bandits (RMAB) have been widely used to model sequential decision making problems with constraints. The decision maker (DM) aims to maximize the expected total reward over an infinite horizon under an “instantaneous activation constraint” that at most B arms can be activated at any decision epoch, where the state of each arm evolves stochastically according to a Markov decision process (MDP). However, this basic model fails to provide any fairness guarantee among arms. In this paper, we introduce RMAB-F, a new RMAB model with “long-term fairness constraints”, where the objective now is to maximize the longterm reward while a minimum long-term activation fraction for each arm must be satisfied. For the online RMAB-F setting (i.e., the underlying MDPs associated with each arm are unknown to the DM), we develop a novel reinforcement learning (RL) algorithm named Fair-UCRL. We prove that Fair-UCRL ensures probabilistic sublinear bounds on both the reward regret and the fairness violation regret. Compared with off-the-shelf RL methods, our Fair-UCRL is much more computationally efficient since it contains a novel exploitation that leverages a low-complexity index policy for making decisions. Experimental results further demonstrate the effectiveness of our Fair-UCRL.

     
    more » « less
  4. Suppose an agent is in a (possibly unknown) Markov Decision Process in the absence of a reward signal, what might we hope that an agent can efficiently learn to do? This work studies a broad class of objectives that are defined solely as functions of the state-visitation frequencies that are induced by how the agent behaves. For example, one natural, intrinsically defined, objective problem is for the agent to learn a policy which induces a distribution over state space that is as uniform as possible, which can be measured in an entropic sense. We provide an efficient algorithm to optimize such such intrinsically defined objectives, when given access to a black box planning oracle (which is robust to function approximation). Furthermore, when restricted to the tabular setting where we have sample based access to the MDP, our proposed algorithm is provably efficient, both in terms of its sample and computational complexities. Key to our algorithmic methodology is utilizing the conditional gradient method (a.k.a. the Frank-Wolfe algorithm) which utilizes an approximate MDP solver. 
    more » « less
  5. Suppose an online platform wants to compare a treatment and control policy (e.g., two different matching algorithms in a ridesharing system, or two different inventory management algorithms in an online retail site). Standard experimental approaches to this problem are biased (due to temporal interference between the policies), and not sample efficient. We study optimal experimental design for this setting. We view testing the two policies as the problem of estimating the steady state difference in reward between two unknown Markov chains (i.e., policies). We assume estimation of the steady state reward for each chain proceeds via nonparametric maximum likelihood, and search for consistent (i.e., asymptotically unbiased) experimental designs that are efficient (i.e., asymptotically minimum variance). Characterizing such designs is equivalent to a Markov decision problem with a minimum variance objective; such problems generally do not admit tractable solutions. Remarkably, in our setting, using a novel application of classical martingale analysis of Markov chains via Poisson's equation, we characterize efficient designs via a succinct convex optimization problem. We use this characterization to propose a consistent, efficient online experimental design that adaptively samples the two Markov chains. 
    more » « less