skip to main content


Title: Horizons: nuclear astrophysics in the 2020s and beyond
Abstract

Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.

 
more » « less
Award ID(s):
1748621 2020275 2209429 1927130
NSF-PAR ID:
10381270
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics G: Nuclear and Particle Physics
Volume:
49
Issue:
11
ISSN:
0954-3899
Page Range / eLocation ID:
Article No. 110502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges. 
    more » « less
  2. ABSTRACT

    The study of the origin of heavy elements is one of the main goals of nuclear astrophysics. In this paper, we present new observational data for the heavy r-process elements gadolinium (Gd, Z= 64), dysprosium (Dy, Z= 66), and thorium (Th, Z= 90) in a sample of 276 Galactic disc stars (–1.0 < [Fe/H] < + 0.3). The stellar spectra have a high resolution of 42 000 and 75 000, and the signal-to-noise ratio higher than 100. The LTE abundances of Gd, Dy, and Th have been determined by comparing the observed and synthetic spectra for three Gd lines (149 stars), four Dy lines (152 stars), and the Th line at 4019.13 Å (170 stars). For about 70 per cent of the stars in our sample, Gd and Dy are measured for the first time, and Th for 95 per cent of the stars. Typical errors vary from 0.07 to 0.16 dex. This paper provides the first extended set of Th observations in the Milky Way disc. Together with europium (Eu, Z= 63) data from our previous studies, we have compared these new observations with nucleosynthesis predictions and Galactic Chemical Evolution simulations. We confirm that [Gd/Fe] and [Dy/Fe] show the same behaviour of Eu. We study with GCE simulations the evolution of [Th/Fe] in comparison with [Eu/Fe], showing that unlike Eu, either the Th production is metallicity dependent in case of a unique source of the r-process in the Galaxy, or the frequency of the Th-rich r-process source is decreasing with the increase in [Fe/H].

     
    more » « less
  3. Abstract

    We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). The newauto_diffmodule implements automatic differentiation inMESA, an enabling capability that alleviates the need for hard-coded analytic expressions or finite-difference approximations. We significantly enhance the treatment of the growth and decay of convection inMESAwith a new model for time-dependent convection, which is particularly important during late-stage nuclear burning in massive stars and electron-degenerate ignition events. We strengthenMESA’s implementation of the equation of state, and we quantify continued improvements to energy accounting and solver accuracy through a discussion of different energy equation features and enhancements. To improve the modeling of stars inMESA, we describe key updates to the treatment of stellar atmospheres, molecular opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive stars with a new operator-split nuclear burning mode. We close by discussing major updates toMESA’s software infrastructure that enhance source code development and community engagement.

     
    more » « less
  4. ABSTRACT

    We present follow-up spectroscopy of 21 cataclysmic variables (CVs) with evolved secondaries and ongoing or recently terminated mass transfer. Evolutionary models predict that the secondaries should have anomalous surface abundances owing to nuclear burning in their cores during their main-sequence evolution and subsequent envelope stripping by their companion white dwarfs. To test these models, we measure sodium (Na) abundances of the donors from the Fraunhofer ‘D’ doublet. Accounting for interstellar absorption, we find that all objects in our sample have enhanced Na abundances. We measure 0.3 dex ≲ [Na/H] ≲ 1.5 dex across the sample, with a median [Na/H]  = 0.956 dex, i.e. about an order of magnitude enhancement over solar values. To interpret these values, we run Modules for Experiments in Stellar Astrophysics binary evolution models of CVs in which mass transfer begins just as the donor leaves the main sequence. These generically predict Na enhancement in donors with initial donor masses $\gtrsim 1\, {\rm M}_{\odot }$, consistent with our observations. In the models, Na enrichment occurs in the donors’ cores via the NeNa cycle near the end of their main-sequence evolution. Na-enhanced material is exposed when the binaries reach orbital periods of a few hours. Donors with higher initial masses are predicted to have higher Na abundances at fixed orbital period owing to their higher core temperatures during main-sequence evolution. The observed [Na/H] values are on average ≈0.3 dex higher than predicted by the models. Surface abundances of evolved CV donors provide a unique opportunity to study nuclear burning products in the cores of intermediate-mass stars.

     
    more » « less
  5. null (Ed.)
    Abstract The coming decades will establish the exploration of the gravitational wave (GW) Universe over a broad frequency range by ground and space interferometers. Meanwhile, wide-field, high-cadence and sensitive surveys will span the electromagnetic spectrum from radio all the way up to TeV, as well as the high-energy neutrino window. Among the numerous classes of transients, γ –ray bursts (GRBs) have direct links with most of the hot topics that will be addressed, such as the strong gravity regime, relativistic shocks, particle acceleration processes, equation of state of matter at nuclear density, and nucleosynthesis of heavy elements, just to mention a few. Other recently discovered classes of transients that are observed throughout cosmological distances include fast radio bursts (FRBs), fast blue optical transients (FBOTs), and other unidentified high-energy transients. Here we discuss how these topics can be addressed by a mission called ASTENA (Advanced Surveyor of Transient Events and Nuclear Astrophysics, see Frontera et al. 18). Its payload combines two instruments: (i) an array of wide-field monitors with imaging, spectroscopic, and polarimetric capabilities (WFM-IS); (ii) a narrow field telescope (NFT) based on a Laue lens operating in the 50–600 keV range with unprecedented angular resolution, polarimetric capabilities, and sensitivity. 
    more » « less