skip to main content

Title: Deep XMM-Newton Observations of an X-ray Weak Broad Absorption Line Quasar at z = 6.5
Abstract We report X-ray observations of the most distant known gravitationally lensed quasar, J0439+1634 at z = 6.52, which is also a broad absorption line (BAL) quasar, using the XMM-Newton Observatory. With a 130 ks exposure, the quasar is significantly detected as a point source at the optical position with a total of 358 − 19 + 19 net counts using the EPIC instrument. By fitting a power law plus Galactic absorption model to the observed spectra, we obtain a spectral slope of Γ = 1.45 − 0.09 + 0.10 . The derived optical-to-X-ray spectral slope α ox is − 2.07 − 0.01 + 0.01 , suggesting that the X-ray emission of J0439+1634 is weaker by a factor of 18 than the expectation based on its 2500 Å luminosity and the average α ox versus luminosity relationship. This is the first time that an X-ray weak BAL quasar at z > 6 has been observed spectroscopically. Its X-ray weakness is consistent with the properties of BAL quasars at lower redshift. By fitting a model including an intrinsic absorption component, we obtain intrinsic column densities of N H = 2.8 − 0.6 + 0.7 × 10 23 cm − 2 and N H = 4.3 − 1.5 + 1.8 × 10 23 cm − 2 , assuming a fixed Γ of 1.9 and a free Γ, respectively. The intrinsic rest-frame 2–10 keV luminosity is derived as (9.4–15.1) × 10 43 erg s −1 , after correcting for lensing magnification ( μ = 51.3). The absorbed power-law model fitting indicates that J0439+1634 is the highest redshift obscured quasar with a direct measurement of the absorbing column density. The intrinsic high column density absorption can reduce the X-ray luminosity by a factor of 3–7, which also indicates that this quasar could be a candidate intrinsically X-ray weak quasar.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT X-ray observations provide a unique probe of the accretion disc corona of supermassive black holes (SMBHs). In this paper, we present a uniform Chandra X-ray data analysis of a sample of 152 z ≥ 4.5 quasars. We firmly detect 46 quasars of this sample in 0.5–2 keV above 3σ and calculate the upper limits of the X-ray flux of the remaining. We also estimate the power-law photon index of the X-ray spectrum of 31 quasars. 24 of our sample quasars are detected in the FIRST or NVSS radio surveys; all of them are radio-loud. We statistically compare the X-ray properties of our z ≥ 4.5 quasars to other X-ray samples of active galactic nuclei (AGNs) at different redshifts. The relation between the rest-frame X-ray luminosity and other quasar parameters, such as the bolometric luminosity, UV luminosity, or SMBH mass, shows large scatters. These large scatters can be attributed to the narrow luminosity range at the highest redshift, the large measurement error based on relatively poor X-ray data, and the inclusion of radio-loud quasars in the sample. The LX–LUV relationship is significantly sublinear. We do not find a significant redshift evolution of the LX–LUV relation, expressed either in the slope of this relation, or the departure of individual AGNs from the best-fitting αOX–LUV relation (ΔαOX). The median value of the X-ray photon index is Γ ≈ 1.79, which does not show redshift evolution from z = 0 to z ∼ 7. The X-ray and UV properties of the most distant quasars could potentially be used as a standard candle to constrain cosmological models. The large scatter of our sample on the Hubble diagram highlights the importance of future large unbiased deep X-ray and radio surveys in using quasars in cosmological studies. 
    more » « less
  2. Abstract The absorption by neutral hydrogen in the intergalactic medium (IGM) produces the Ly α forest in the spectra of quasars. The Ly α forest absorbers have a broad distribution of neutral hydrogen column density N H I and Doppler b parameter. The narrowest Ly α absorption lines (of lowest b ) with neutral hydrogen column density above ∼10 13 cm −2 are dominated by thermal broadening, which can be used to constrain the thermal state of the IGM. Here we constrain the temperature-density relation T = T 0 ( ρ / ρ ¯ ) γ − 1 of the IGM at 1.6 < z < 3.6 by using N H I and b parameters measured from 24 high-resolution and high-signal-to-noise quasar spectra and by employing an analytic model to model the N H I -dependent low- b cutoff in the b distribution. In each N H I bin, the b cutoff is estimated using two methods, one non-parametric method from computing the cumulative b distribution and a parametric method from fitting the full b distribution. We find that the IGM temperature T 0 at the mean gas density ρ ¯ shows a peak of ∼1.5 × 10 4 K at z ∼ 2.7–2.9. At redshift higher than this, the index γ approximately remains constant, and it starts to increase toward lower redshifts. The evolution in both parameters is in good agreement with constraints from completely different approaches, which signals that He ii reionization completes around z ∼ 3. 
    more » « less
  3. Abstract We present measurements of the polarization of X-rays in the 2–8 keV band from the nucleus of the radio galaxy Centaurus A (Cen A), using a 100 ks observation from the Imaging X-ray Polarimetry Explorer (IXPE). Nearly simultaneous observations of Cen A were also taken with the Swift, NuSTAR, and INTEGRAL observatories. No statistically significant degree of polarization is detected with IXPE. These observations have a minimum detectable polarization at 99% confidence (MDP 99 ) of 6.5% using a weighted, spectral model-independent calculation in the 2–8 keV band. The polarization angle ψ is consequently unconstrained. Spectral fitting across three orders of magnitude in X-ray energy (0.3–400 keV) demonstrates that the SED of Cen A is well described by a simple power law with moderate intrinsic absorption ( N H ∼ 10 23 cm −2 ) and a Fe K α emission line, although a second unabsorbed power law is required to account for the observed spectrum at energies below 2 keV. This spectrum suggests that the reprocessing material responsible for this emission line is optically thin and distant from the central black hole. Our upper limits on the X-ray polarization are consistent with the predictions of Compton scattering, although the specific seed photon population responsible for the production of the X-rays cannot be identified. The low polarization degree, variability in the core emission, and the relative lack of variability in the Fe K α emission line support a picture where electrons are accelerated in a region of highly disordered magnetic fields surrounding the innermost jet. 
    more » « less
  4. Which galaxies in the general population turn into active galactic nuclei (AGNs) is a keystone of galaxy formation and evolution. Thanks to SRG/eROSITA’s contiguous 140 square degree pilot survey field, we constructed a large, complete, and unbiased soft X-ray flux-limited ( F X  > 6.5 × 10 −15 erg s −1 cm −2 ) AGN sample at low redshift, 0.05 <  z  < 0.55. Two summary statistics, the clustering using spectra from SDSS-V and galaxy-galaxy lensing with imaging from HSC, are measured and interpreted with halo occupation distribution and abundance matching models. Both models successfully account for the observations. We obtain an exceptionally complete view of the AGN halo occupation distribution. The population of AGNs is broadly distributed among halos with a mean mass of 3.9 −2.4 +2.0  × 10 12   M ⊙ . This corresponds to a large-scale halo bias of b ( z  = 0.34) = 0.99 −0.10 +0.08 . The central occupation has a large transition parameter, σ log 10 ( M )  = 1.28 ± 0.2. The satellite occupation distribution is characterized by a shallow slope, α sat  = 0.73 ± 0.38. We find that AGNs in satellites are rare, with f sat  < 20%. Most soft X-ray-selected AGNs are hosted by central galaxies in their dark matter halo. A weak correlation between soft X-ray luminosity and large-scale halo bias is confirmed (3.3 σ ). We discuss the implications of environmental-dependent AGN triggering. This study paves the way toward fully charting, in the coming decade, the coevolution of X-ray AGNs, their host galaxies, and dark matter halos by combining eROSITA with SDSS-V, 4MOST, DESI, LSST, and Euclid data. 
    more » « less
  5. We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], or [C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn. 
    more » « less