ABSTRACT X-ray observations provide a unique probe of the accretion disc corona of supermassive black holes (SMBHs). In this paper, we present a uniform Chandra X-ray data analysis of a sample of 152 z ≥ 4.5 quasars. We firmly detect 46 quasars of this sample in 0.5–2 keV above 3σ and calculate the upper limits of the X-ray flux of the remaining. We also estimate the power-law photon index of the X-ray spectrum of 31 quasars. 24 of our sample quasars are detected in the FIRST or NVSS radio surveys; all of them are radio-loud. We statistically compare the X-ray properties of our z ≥ 4.5 quasars to other X-ray samples of active galactic nuclei (AGNs) at different redshifts. The relation between the rest-frame X-ray luminosity and other quasar parameters, such as the bolometric luminosity, UV luminosity, or SMBH mass, shows large scatters. These large scatters can be attributed to the narrow luminosity range at the highest redshift, the large measurement error based on relatively poor X-ray data, and the inclusion of radio-loud quasars in the sample. The LX–LUV relationship is significantly sublinear. We do not find a significant redshift evolution of the LX–LUV relation, expressed either in the slope ofmore »
Deep XMM-Newton Observations of an X-ray Weak Broad Absorption Line Quasar at z = 6.5
Abstract We report X-ray observations of the most distant known gravitationally lensed quasar, J0439+1634 at z = 6.52, which is also a broad absorption line (BAL) quasar, using the XMM-Newton Observatory. With a 130 ks exposure, the quasar is significantly detected as a point source at the optical position with a total of 358 − 19 + 19 net counts using the EPIC instrument. By fitting a power law plus Galactic absorption model to the observed spectra, we obtain a spectral slope of Γ = 1.45 − 0.09 + 0.10 . The derived optical-to-X-ray spectral slope α ox is − 2.07 − 0.01 + 0.01 , suggesting that the X-ray emission of J0439+1634 is weaker by a factor of 18 than the expectation based on its 2500 Å luminosity and the average α ox versus luminosity relationship. This is the first time that an X-ray weak BAL quasar at z > 6 has been observed spectroscopically. Its X-ray weakness is consistent with the properties of BAL quasars at lower redshift. By fitting a model including an intrinsic absorption component, we obtain intrinsic column densities of N H = 2.8 − 0.6 + 0.7 × 10 23 cm − 2 and more »
- Award ID(s):
- 1908284
- Publication Date:
- NSF-PAR ID:
- 10381324
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 924
- Issue:
- 2
- Page Range or eLocation-ID:
- L25
- ISSN:
- 2041-8205
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the molecular gas content of z ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust ∼ 47 K and an optical depth τ ν = 0.2 at the [C II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C I ], ormore »
-
ABSTRACT We report on continued, ∼15-yr long, broad Balmer emission lines in three metal-poor dwarf emission-line galaxies selected from Sloan Digital Sky Survey spectroscopy. The persistent luminosity of the broad Balmer emission indicates the galaxies are active galactic nuclei (AGNs) with virial black hole masses of ∼106.7–107.0 M⊙. The lack of observed hard X-ray emission and the possibility that the Balmer emission could be due to a long-lived stellar transient motivated additional follow-up spectroscopy. We also identify a previously unreported blueshifted narrow absorption line in the broad H α feature in one of the AGNs, indicating an AGN-driven outflow with hydrogen column densities of order 1017 cm−2. We also extract light curves from the Catalina Real-Time Transient Survey and the Zwicky Transient Facility. We detect probable AGN-like variability in three galaxies, further supporting the AGN scenario. This also suggests the AGNs are not strongly obscured. This sample of galaxies are among the most metal-poor that host an AGN (Z = 0.05–0.16 Z⊙). We speculate they may be analogues to seed black holes which formed in unevolved galaxies at high redshift. Given the rarity of metal-poor AGNs and small sample size available, we investigate prospects for their identification in future spectroscopic and photometric surveys.
-
Abstract Sub-damped Lyman α systems (subDLAs; H i column densities of 19.0 ≤ logN(H i) < 20.3) are rarely included in the cosmic H i census performed at redshifts zabs ≳ 1.5, yet are expected to contribute significantly to the overall H i mass budget of the Universe. In this paper, we present a blindly selected sample of 155 subDLAs found along 100 quasar sightlines (with a redshift path-length ΔX = 475) in the XQ-100 legacy survey to investigate the contribution of subDLAs to the H i mass density of the Universe. The impact of X-Shooter’s spectral resolution on Ly α absorber identification is evaluated, and found to be sufficient for reliably finding absorbers down to a column density of logN(H i) ≥ 18.9. We compared the implications of searching for subDLAs solely using H i absorption versus the use of metal lines to confirm the identification, and found that metal-selection techniques would have missed 75 subDLAs. Using a bootstrap Monte Carlo simulation, we computed the column density distribution function (f(N, X)) and the cosmological H i mass density ($\Omega _{\rm H\,{\small I}}$) of subDLAs and compared with our previous work based on the XQ-100 damped Lyman α systems. We do not find any significant redshift evolution in f(N, X) or $\Omega _{\rmmore »
-
ABSTRACT In this paper, we provide updated constraints on the bolometric quasar luminosity function (QLF) from z = 0 to z = 7. The constraints are based on an observational compilation that includes observations in the rest-frame IR, B band, UV, soft, and hard X-ray in past decades. Our method follows Hopkins et al. with an updated quasar SED model and bolometric and extinction corrections. The new best-fitting bolometric quasar luminosity function behaves qualitatively different from the old Hopkins model at high redshift. Compared with the old model, the number density normalization decreases towards higher redshift and the bright-end slope is steeper at z ≳ 2. Due to the paucity of measurements at the faint end, the faint end slope at z ≳ 5 is quite uncertain. We present two models, one featuring a progressively steeper faint-end slope at higher redshift and the other featuring a shallow faint-end slope at z ≳ 5. Further multiband observations of the faint-end QLF are needed to distinguish between these models. The evolutionary pattern of the bolometric QLF can be interpreted as an early phase likely dominated by the hierarchical assembly of structures and a late phase likely dominated by the quenching of galaxies. We explore the implications of thismore »