skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Characterizing THz Scattering Loss in Nano-Scale SOI Waveguides Exhibiting Stochastic Surface Roughness with Exponential Autocorrelation
Electromagnetic (EM) scattering may be a significant source of degradation in signal and power integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as opto-electronic or optical interconnects operating at 100 s of THz where two-dimensional (2D) analytical models of dielectric slab waveguides are often used to approximate scattering loss. In this work, a formulation is presented to relate the scattering (propagation) loss to the scattering parameters (S-parameters) for the smooth waveguide; the results are correlated with results from the finite-difference time-domain (FDTD) method in 2D space. We propose a normalization factor to the previous 2D analytical formulation for the stochastic scattering loss based on physical parameters of waveguides exhibiting random surface roughness under the exponential autocorrelation function (ACF), and validate the results by comparing against numerical experiments via the 2D FDTD method, through simulation of hundreds of rough waveguides; additionally, results are compared to other 2D analytical and previous 3D experimental results. The FDTD environment is described and validated by comparing results of the smooth waveguide against analytical solutions for wave impedance, propagation constant, and S-parameters. Results show that the FDTD model is in agreement with the analytical solution for the smooth waveguide and is a reasonable approximation of the stochastic scattering loss for the rough waveguide.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The dielectric waveguide (WG) is an important building block of high-speed and high-bandwidth optical and opto-electronic interconnect networks that operate in the THz frequency regime. At the interface of Si/SiO 2 dielectric waveguides with width above w = 2.5 μm and anisotropic surface roughness, transverse electric (TE) mode surface wave propagation can experience a loss of approximately a = 2 dB/cm; however, propagation losses increase rapidly to near a = 44 dB/cm as the width decreases to w = 500 nm, due to increased interaction of surface waves and sidewall surface roughness that exhibits random distribution inherent to the manufacturing process. Previous works have developed analytic expressions for computing propagation loss in a single dielectric waveguide exhibiting random roughness. More recent works report a = 0.4 dB/cm noting the non-trivial estimation errors in previous theoretical formulations which relied on planar approximations, and highlight the discrepancy in planar approximations vs. the 3-D Volume Current Method. A challenge that remains in the path of designing nanoscale optical interconnects is the dearth of efficient 3-D stochastic computational electromagnetic (CEM) models for multiple tightly coupled optical dielectric waveguides that characterize propagation loss due to random surface roughness in waveguide sidewalls. Through a series of theoretical and numerical experiments developed in the method of finite-difference time-domain (FDTD), we aim to develop stochastic CEM models to quantify propagation loss and facilitate signal & power integrity modeling & simulation of arbitrary configurations of multiple tightly-coupled waveguides, and to gain further insights into loss mechanisms due to random surface roughness in optical interconnects. 
    more » « less
  2. Abstract

    Low propagation loss in high confinement waveguides is critical for chip‐based nonlinear photonics applications. Sophisticated fabrication processes which yield sub‐nm roughness are generally needed to reduce scattering points at the waveguide interfaces to achieve ultralow propagation loss. Here, ultralow propagation loss is shown by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 ± 4.4 million are experimentally demonstrated. Although the microresonators support ten transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record‐low threshold pump power of 73 µW for parametric oscillation is measured and a broadband, almost octave spanning single‐soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that can be applied to different material platforms to achieve and use ultrahigh‐Qmultimode microresonators.

    more » « less
  3. As 6G wireless communications push the operation frequency above 110 GHz, it is critical to have low-loss interconnects that can be accurately tested. To this end, D-band (110 GHz to 170 GHz) substrate-integrated waveguides (SIWs) are designed on a 100-μm-thick SiC substrate. The fabricated SIWs are probed on-wafer in a single sweep from 70 kHz to 220 GHz with their input/output transitioned to grounded coplanar waveguides (GCPWs). From CPW-probed scattering parameters, two-tier calibration is used to de-embed the SIW-GCPW transitions and to extract the intrinsic SIW characteristics. In general, the record low loss measured agrees with that obtained from finite-element full-wave electromagnetic simulation. For example, across the D band, the average insertion loss is approximately 0.2 dB/mm, which is several times better than that of coplanar or microstrip transmission lines fabricated on the same substrate. A 3-pole filter exhibits a 1-dB insertion loss at 135 GHz with 20-dB selectivity and 11% bandwidth, which is order-of-magnitude better than typical on-chip filters. These results underscore the potential of using SIWs to interconnect transistors, filters, antennas, and other circuit elements on the same monolithically integrated chip. 
    more » « less
  4. We demonstrate novel trapezoidal and rectangular stratified trench optical waveguide designs that feature low-loss two-dimensional confinement of guided optical modes that can be realized in continuous polymer thin film layers formed in a trench mold. The design is based on geometrical bends in a thin film core to enable two-dimensional confinement of light in the transverse plane, without any variation in the core thickness. Incidentally, the waveguide design would completely obviate the need for etching the waveguide core, avoiding the scattering loss due to the etched sidewall roughness. This new design exhibits an intrinsic leakage loss due to coupling of light out of the trench, which can be minimized by choosing an appropriate waveguide geometry. Finite-difference eigenmode simulation demonstrates a low intrinsic leakage loss of less than 0.15 dB/cm. We discuss the principle of operation of these stratified trench waveguides and present the design and numerical simulations of a specific realization of this waveguide geometry. The design considerations and tradeoffs in propagation loss and confinement compared with traditional ridge waveguides are discussed.

    more » « less
  5. Inverse rendering is a powerful approach to modeling objects from photographs, and we extend previous techniques to handle translucent materials that exhibit subsurface scattering. Representing translucency using a heterogeneous bidirectional scattering-surface reflectance distribution function (BSSRDF), we extend the framework of path-space differentiable rendering to accommodate both surface and subsurface reflection. This introduces new types of paths requiring new methods for sampling moving discontinuities in material space that arise from visibility and moving geometry. We use this differentiable rendering method in an end-to-end approach that jointly recovers heterogeneous translucent materials (represented by a BSSRDF) and detailed geometry of an object (represented by a mesh) from a sparse set of measured 2D images in a coarse-to-fine framework incorporating Laplacian preconditioning for the geometry. To efficiently optimize our models in the presence of the Monte Carlo noise introduced by the BSSRDF integral, we introduce a dual-buffer method for evaluating the L2 image loss. This efficiently avoids potential bias in gradient estimation due to the correlation of estimates for image pixels and their derivatives and enables correct convergence of the optimizer even when using low sample counts in the renderer. We validate our derivatives by comparing against finite differences and demonstrate the effectiveness of our technique by comparing inverse-rendering performance with previous methods. We show superior reconstruction quality on a set of synthetic and real-world translucent objects as compared to previous methods that model only surface reflection. 
    more » « less