skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamical Masses of the Primary Be Star and Secondary sdB Star in the Single-lined Binary κ Dra (B6 IIIe)
Abstract Because many classical Be stars may owe their nature to mass and angular-momentum transfer in a close binary, the present masses, temperatures, and radii of their components are of high interest for comparison to stellar evolution models. ObjectκDra is a 61.5 day single-lined binary with a B6 IIIe primary. With the CHARA Array instruments MIRC/MIRC-X and MYSTIC, we detected the secondary at (approximately photospheric) flux ratios of 1.49% ± 0.10% and 1.63% ± 0.09% in theHandKband, respectively. From a large and diverse optical spectroscopic database, only the radial velocity curve of the Be star could be extracted. However, employing the parallaxes from Hipparcos and Gaia, which agree within their nominal 1σerrors, we could derive the total mass and found component masses of 3.65 ± 0.48 and 0.426 ± 0.043Mfor the Be star and the companion, respectively. Previous cross-correlation of the observed FUV spectrum with O-type subdwarf (sdO) spectral model templates had not detected a companion belonging to the hot sdO population known from ∼20 earlier-type Be stars. Guided by our full 3D orbital solution, we found a strong cross-correlation signal for a stripped subdwarf B-type companion (FUV flux ratio of 2.3% ± 0.5%), enabling the first firm characterization of such a star and makingκDra the first mid- to late-type Be star with a directly observed subdwarf companion.  more » « less
Award ID(s):
1909165 1506540 2034336 1908026
PAR ID:
10381485
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
940
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 86
Size(s):
Article No. 86
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars. 
    more » « less
  2. Abstract The origin of the bright and hard X-ray emission flux among theγCas subgroup of B-emission line (Be) stars may be caused by gas accretion onto an orbiting white dwarf (WD) companion. Such Be+WD binaries are the predicted outcome of a second stage of mass transfer from a helium star mass donor to a rapidly rotating mass gainer star. The stripped donor stars become small and hot white dwarfs that are extremely faint compared to their Be star companions. Here we discuss model predictions about the physical and orbital properties of Be+WD binaries, and we show that current observational results onγCas systems are consistent with the expected large binary frequency, companion faintness and small mass, and relatively high mass range of the Be star hosts. We determine that the companions are probably not stripped helium stars (hot subdwarf sdO stars), because these are bright enough to detect in ultraviolet spectroscopy, yet their spectroscopic signatures are not observed in studies ofγCas binaries. Interferometry of relatively nearby systems provides the means to detect very faint companions including hot subdwarf and cooler main-sequence stars. Preliminary observations of fiveγCas binaries with the CHARA Array interferometer show no evidence of the companion flux, leaving white dwarfs as the only viable candidates for the companions. 
    more » « less
  3. Abstract Rapid rotation and nonradial pulsations enable Be stars to build decretion disks, where the characteristic line emission forms. A major but unconstrained fraction of Be stars owe their rapid rotation to mass and angular momentum transfer in a binary. The faint, stripped companions can be helium-burning subdwarf OB-type stars (sdOBs), white dwarfs (WDs), or neutron stars. We present optical/near-infrared Center for High Angular Resolution Astronomy (CHARA) interferometry of 37 Be stars selected for spectroscopic indications of low-mass companions. From multiepochH- and/orK-band interferometry plus radial velocities and parallaxes collected elsewhere, we constructed 3D orbits and derived flux ratios and absolute dynamical masses of both components for six objects, quadrupling the number of anchor points for evolutionary models. In addition, a new wider companion was identified for the known Be + sdO binary 59 Cyg, while auxiliary Very Large Telescope Interferometer/GRAVITY spectrointerferometry confirmed circumstellar matter around the sdO companion to HR 2142. On the other hand, we failed to detect any companion to the six Be stars withγCas–like X-ray emission, with sdOB and main-sequence companions of the expected spectroscopic mass being ruled out for the X-ray-prototypical starsγCas andπAqr, leaving elusive WDs as the most likely companions, as well as a likely explanation of the X-rays. No low-mass main-sequence close companions were identified for the other stars. 
    more » « less
  4. Abstract AQ Col (EC 05217-3914) is one of the first detected pulsating subdwarf B (sdB) stars and has been considered to be a single star. Photometric monitoring of AQ Col reveals a pulsation timing variation with a period of 486 days, interpreted as time delay due to reflex motion in a wide binary formed with an unseen companion with expected mass larger than 1.05M. The optical spectra and color–magnitude diagram of the system suggested that the companion is not a main-sequence star but a white dwarf or neutron star. The pulsation timing variation also shows that the system has an eccentricity of 0.424, which is much larger than any known sdB long period binary system. That might be due to the existence of another short period companion to the sdB star. Two optical spectra obtained on 1996 December 5 show a radial velocity change of 49.1 km s−1in 46.1 minutes, which suggests the hot subdwarf in the wide binary is itself a close binary formed with another unseen white dwarf or neutron star companion; if further observations show this interpretation to be correct, AQ Col is an interesting triple system worthy of further study. 
    more » « less
  5. Abstract We present the variations in far-ultraviolet (FUV) and Hαstar formation rates (SFR), SFRUVand SFR, respectively, at subkiloparsec scales in 11 galaxies as part of the Deciphering the Interplay between the Interstellar Medium, Stars, and the Circumgalactic medium survey. Using archival GALEX FUV imagery and Hα+[Nii] narrowband images obtained with the Vatican Advanced Technology Telescope, we detect a total of 1335 (FUV-selected) and 1474 (Hα-selected) regions of recent high-mass star formation, respectively. We find the Hα-to-FUV SFR ratios tend to be lower primarily for FUV-selected regions, where SFRgenerally underestimates the SFR by an average factor of 2–3, for SFR < 10−4Myr−1. In contrast, the SFRs are generally observed to be consistent for Hα-selected regions. This discrepancy arises from morphological differences between the two indicators. Extended FUV morphologies and larger areas covered by FUV-only regions, along with decreasing overlap between FUV clumps and compact Hiiregions withR/R25suggest that stochastic sampling of the initial mass function may be more pronounced in the outer regions of galaxies. Our observed Hα-to-FUV SFR ratios are also consistent with stochastic star formation model predictions. However, using larger apertures that include diffuse FUV emission results in an offset of 1 dex between SFRand SFRUV, suggesting that the observed low Hα-to-FUV SFR ratios in galaxies are likely caused by diffuse FUV emission, which can contribute ∼60%–90% to the total FUV flux. 
    more » « less