skip to main content

Title: Interferometric Detections of sdO Companions Orbiting Three Classical Be Stars
Abstract

Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2034336 1636624 2009489 1908026
Publication Date:
NSF-PAR ID:
10363124
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
Page Range or eLocation-ID:
Article No. 213
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Because many classical Be stars may owe their nature to mass and angular-momentum transfer in a close binary, the present masses, temperatures, and radii of their components are of high interest for comparison to stellar evolution models. ObjectκDra is a 61.5 day single-lined binary with a B6 IIIe primary. With the CHARA Array instruments MIRC/MIRC-X and MYSTIC, we detected the secondary at (approximately photospheric) flux ratios of 1.49% ± 0.10% and 1.63% ± 0.09% in theHandKband, respectively. From a large and diverse optical spectroscopic database, only the radial velocity curve of the Be star could be extracted. However, employing the parallaxes from Hipparcos and Gaia, which agree within their nominal 1σerrors, we could derive the total mass and found component masses of 3.65 ± 0.48 and 0.426 ± 0.043Mfor the Be star and the companion, respectively. Previous cross-correlation of the observed FUV spectrum with O-type subdwarf (sdO) spectral model templates had not detected a companion belonging to the hot sdO population known from ∼20 earlier-type Be stars. Guided by our full 3D orbital solution, we found a strong cross-correlation signal for a stripped subdwarf B-type companion (FUV flux ratio of 2.3% ± 0.5%), enabling the first firm characterization ofmore »such a star and makingκDra the first mid- to late-type Be star with a directly observed subdwarf companion.

    « less
  2. Abstract

    We describe the public release of the Cluster Monte Carlo (CMC) code, a parallel, star-by-starN-body code for modeling dense star clusters.CMCtreats collisional stellar dynamics using Hénon’s method, where the cumulative effect of many two-body encounters is statistically reproduced as a single effective encounter between nearest-neighbor particles on a relaxation timescale. The star-by-star approach allows for the inclusion of additional physics, including strong gravitational three- and four-body encounters, two-body tidal and gravitational-wave captures, mass loss in arbitrary galactic tidal fields, and stellar evolution for both single and binary stars. The public release ofCMCis pinned directly to theCOSMICpopulation synthesis code, allowing dynamical star cluster simulations and population synthesis studies to be performed using identical assumptions about the stellar physics and initial conditions. As a demonstration, we present two examples of star cluster modeling: first, we perform the largest (N= 108) star-by-starN-body simulation of a Plummer sphere evolving to core collapse, reproducing the expected self-similar density profile over more than 15 orders of magnitude; second, we generate realistic models for typical globular clusters, and we show that their dynamical evolution can produce significant numbers of black hole mergers with masses greater than those produced from isolated binary evolution (such as GW190521, amore »recently reported merger with component masses in the pulsational pair-instability mass gap).

    « less
  3. Abstract

    Stellar mass is a fundamental parameter that is key to our understanding of stellar formation and evolution, as well as the characterization of nearby exoplanet companions. Historically, stellar masses have been derived from long-term observations of visual or spectroscopic binary star systems. While advances in high-resolution imaging have enabled observations of systems with shorter orbital periods, measurements of stellar masses remain challenging, and relatively few have been precisely measured. We present a new statistical approach to measuring masses for populations of stars. Using Gaia astrometry, we analyze the relative orbital motion of >3800 wide binary systems comprising low-mass stars to establish a mass–magnitude relation in the GaiaGRPband spanning the absolute magnitude range 14.5 >MGRP> 4.0, corresponding to a mass range of 0.08MM≲ 1.0M. This relation is directly applicable to >30 million stars in the Gaia catalog. Based on comparison to existing mass–magnitude relations calibrated forKsmagnitudes from the Two Micron All Sky Survey, we estimate that the internal precision of our mass estimates is ∼10%. We use this relation to estimate masses for a volume-limited sample of ∼18,200 stars within 50 pc of the Sun and the present-day field mass function for stars withM≲ 1.0M, which wemore »find peaks at 0.16M. We investigate a volume-limited sample of wide binary systems with early-K dwarf primaries, complete for binary mass ratiosq> 0.2, and measure the distribution ofqat separations >100 au. We find that our distribution ofqis not uniform, rather decreasing towardq= 1.0.

    « less
  4. Abstract

    Helium-rich subdwarf O stars (sdOs) are hot compact stars in a pre-white dwarf evolutionary state. Most of them have effective temperatures and surface gravities in the range Teff = 40 000–50 000 K and log g = 5.5–6.0. Their atmospheres are helium dominated. If present at all, C, N, and O are trace elements. The abundance patterns are explained in terms of nucleosynthesis during single star evolution (late helium core flash) or a binary He-core white dwarf merger. Here we announce the discovery of two hot hydrogen-deficient sdOs (PG1654+322 and PG1528+025) that exhibit unusually strong carbon and oxygen lines. A non-LTE model atmosphere analysis of spectra obtained with the Large Binocular Telescope and by the LAMOST survey reveals astonishingly high abundances of C ($\approx 20{{\ \rm per\ cent}}$) and O ($\approx 20{{\ \rm per\ cent}}$) and that the two stars are located close to the helium main sequence. Both establish a new spectroscopic class of hot H-deficient subdwarfs (CO-sdO) and can be identified as the remnants of a He-core white dwarf that accreted matter of a merging low-mass CO-core white dwarf. We conclude that the CO-sdOs represent an alternative evolutionary channel creating PG1159 stars besides the evolution of single stars that experience a late helium-shell flash.

  5. ABSTRACT

    We present a detailed study of the stellar and orbital parameters of the post-common envelope binary central star of the planetary nebula Ou 5. Low-resolution spectra obtained during the primary eclipse – to our knowledge the first isolated spectra of the companion to a post-common-envelope planetary nebula central star – were compared to catalogue spectra, indicating that the companion star is a late K- or early M-type dwarf. Simultaneous modelling of multiband photometry and time-resolved radial velocity measurements was then used to independently determine the parameters of both stars as well as the orbital period and inclination. The modelling indicates that the companion star is low mass (∼0.25 M⊙) and has a radius significantly larger than would be expected for its mass. Furthermore, the effective temperature and surface gravity of nebular progenitor, as derived by the modelling, do not lie on single-star post-AGB evolutionary tracks, instead being more consistent with a post-RGB evolution. However, an accurate determination of the component masses is challenging. This is principally due to the uncertainty on the locus of the spectral lines generated by the irradiation of the companion’s atmosphere by the hot primary (used to derive companion star’s radial velocities), as well as the lackmore »of radial velocities of the primary.

    « less