skip to main content


Title: Interferometric Detections of sdO Companions Orbiting Three Classical Be Stars
Abstract

Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars.

 
more » « less
Award ID(s):
2034336 1636624 2009489 1908026
NSF-PAR ID:
10363124
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 213
Size(s):
["Article No. 213"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rapid rotation and nonradial pulsations enable Be stars to build decretion disks, where the characteristic line emission forms. A major but unconstrained fraction of Be stars owe their rapid rotation to mass and angular momentum transfer in a binary. The faint, stripped companions can be helium-burning subdwarf OB-type stars (sdOBs), white dwarfs (WDs), or neutron stars. We present optical/near-infrared Center for High Angular Resolution Astronomy (CHARA) interferometry of 37 Be stars selected for spectroscopic indications of low-mass companions. From multiepochH- and/orK-band interferometry plus radial velocities and parallaxes collected elsewhere, we constructed 3D orbits and derived flux ratios and absolute dynamical masses of both components for six objects, quadrupling the number of anchor points for evolutionary models. In addition, a new wider companion was identified for the known Be + sdO binary 59 Cyg, while auxiliary Very Large Telescope Interferometer/GRAVITY spectrointerferometry confirmed circumstellar matter around the sdO companion to HR 2142. On the other hand, we failed to detect any companion to the six Be stars withγCas–like X-ray emission, with sdOB and main-sequence companions of the expected spectroscopic mass being ruled out for the X-ray-prototypical starsγCas andπAqr, leaving elusive WDs as the most likely companions, as well as a likely explanation of the X-rays. No low-mass main-sequence close companions were identified for the other stars.

     
    more » « less
  2. Abstract

    Because many classical Be stars may owe their nature to mass and angular-momentum transfer in a close binary, the present masses, temperatures, and radii of their components are of high interest for comparison to stellar evolution models. ObjectκDra is a 61.5 day single-lined binary with a B6 IIIe primary. With the CHARA Array instruments MIRC/MIRC-X and MYSTIC, we detected the secondary at (approximately photospheric) flux ratios of 1.49% ± 0.10% and 1.63% ± 0.09% in theHandKband, respectively. From a large and diverse optical spectroscopic database, only the radial velocity curve of the Be star could be extracted. However, employing the parallaxes from Hipparcos and Gaia, which agree within their nominal 1σerrors, we could derive the total mass and found component masses of 3.65 ± 0.48 and 0.426 ± 0.043Mfor the Be star and the companion, respectively. Previous cross-correlation of the observed FUV spectrum with O-type subdwarf (sdO) spectral model templates had not detected a companion belonging to the hot sdO population known from ∼20 earlier-type Be stars. Guided by our full 3D orbital solution, we found a strong cross-correlation signal for a stripped subdwarf B-type companion (FUV flux ratio of 2.3% ± 0.5%), enabling the first firm characterization of such a star and makingκDra the first mid- to late-type Be star with a directly observed subdwarf companion.

     
    more » « less
  3. Abstract

    We describe the public release of the Cluster Monte Carlo (CMC) code, a parallel, star-by-starN-body code for modeling dense star clusters.CMCtreats collisional stellar dynamics using Hénon’s method, where the cumulative effect of many two-body encounters is statistically reproduced as a single effective encounter between nearest-neighbor particles on a relaxation timescale. The star-by-star approach allows for the inclusion of additional physics, including strong gravitational three- and four-body encounters, two-body tidal and gravitational-wave captures, mass loss in arbitrary galactic tidal fields, and stellar evolution for both single and binary stars. The public release ofCMCis pinned directly to theCOSMICpopulation synthesis code, allowing dynamical star cluster simulations and population synthesis studies to be performed using identical assumptions about the stellar physics and initial conditions. As a demonstration, we present two examples of star cluster modeling: first, we perform the largest (N= 108) star-by-starN-body simulation of a Plummer sphere evolving to core collapse, reproducing the expected self-similar density profile over more than 15 orders of magnitude; second, we generate realistic models for typical globular clusters, and we show that their dynamical evolution can produce significant numbers of black hole mergers with masses greater than those produced from isolated binary evolution (such as GW190521, a recently reported merger with component masses in the pulsational pair-instability mass gap).

     
    more » « less
  4. Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P  = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2  ≈ 32  M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yr −1 ) = −7.7 ± 0.2. Binary evolutionary models can explain the empirically derived stellar and orbital parameters, including the position of the AzV 14 components on the Hertzsprung-Russell diagram, revealing its current age of 3.3 Myr. The model predicts that the primary will evolve into a WR star with T eff  ≈ 100 kK, while the secondary, which will accrete significant amounts of mass during the first mass transfer phase, will become a cooler WR star with T eff  ≈ 50 kK. Furthermore, WR stars that descend from binary components that have accreted significant amount of mass are predicted to have increased oxygen abundances compared to other WR stars. This model prediction is supported by a spectroscopic analysis of a WR star in the SMC. Conclusions. Inspired by the binary evolutionary models, we hypothesize that the populations of WR stars in low-metallicity galaxies may have bimodal temperature distributions. Hotter WR stars might originate from primary stars, while cooler WR stars are the evolutionary descendants of the secondary stars if they accreted a significant amount of mass. These results may have wide-ranging implications for our understanding of massive star feedback and binary evolution channels at low metallicity. 
    more » « less
  5. ABSTRACT

    Multibody dynamical interactions of binaries with other objects are one of the main driving mechanisms for the evolution of star clusters. It is thus important to bring our understanding of three-body interactions beyond the commonly employed point-particle approximation. To this end, we here investigate the hydrodynamics of three-body encounters between star–black hole (BH) binaries and single stars, focusing on the identification of final outcomes and their long-term evolution and observational properties, using the moving-mesh hydrodynamics code AREPO. This type of encounter produces five types of outcomes: stellar disruption, stellar collision, weak perturbation of the original binary, binary member exchange, and triple formation. The two decisive parameters are the binary phase angle, which determines which two objects meet at the first closest approach, and the impact parameter, which sets the boundary between violent and non-violent interactions. When the impact parameter is smaller than the semimajor axis of the binary, tidal disruptions and star-BH collisions frequently occur when the BH and the incoming star first meet, while the two stars mostly merge when the two stars meet first instead. In both cases, the BHs accrete from an accretion disc at super-Eddington rates, possibly generating flares luminous enough to be observed. The stellar collision products either form a binary with the BH or remain unbound to the BH. Upon collision, the merged stars are hotter and larger than the main sequence stars of the same mass at similar age. Even after recovering their thermal equilibrium state, stellar collision products, if isolated, would remain hotter and brighter than main sequence stars until becoming giants.

     
    more » « less