skip to main content

Title: Drone-Based Remote Sensing for Research on Wind Erosion in Drylands: Possible Applications
With rapid innovations in drone, camera, and 3D photogrammetry, drone-based remote sensing can accurately and efficiently provide ultra-high resolution imagery and digital surface model (DSM) at a landscape scale. Several studies have been conducted using drone-based remote sensing to quantitatively assess the impacts of wind erosion on the vegetation communities and landforms in drylands. In this study, first, five difficulties in conducting wind erosion research through data collection from fieldwork are summarized: insufficient samples, spatial displacement with auxiliary datasets, missing volumetric information, a unidirectional view, and spatially inexplicit input. Then, five possible applications—to provide a reliable and valid sample set, to mitigate the spatial offset, to monitor soil elevation change, to evaluate the directional property of land cover, and to make spatially explicit input for ecological models—of drone-based remote sensing products are suggested. To sum up, drone-based remote sensing has become a useful method to research wind erosion in drylands, and can solve the issues caused by using data collected from fieldwork. For wind erosion research in drylands, we suggest that a drone-based remote sensing product should be used as a complement to field measurements.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Remote Sensing
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unoccupied Aerial Vehicles (UAVs), or drone technologies, with their high spatial resolution, temporal flexibility, and ability to repeat photogrammetry, afford a significant advancement in other remote sensing approaches for coastal mapping, habitat monitoring, and environmental management. However, geographical drone mapping and in situ fieldwork often come with a steep learning curve requiring a background in drone operations, Geographic Information Systems (GIS), remote sensing and related analytical techniques. Such a learning curve can be an obstacle for field implementation for researchers, community organizations and citizen scientists wishing to include introductory drone operations into their work. In this study, we develop a comprehensive drone training program for research partners and community members to use cost-effective, consumer-quality drones to engage in introductory drone mapping of coastal seagrass monitoring sites along the west coast of North America. As a first step toward a longer-term Public Participation GIS process in the study area, the training program includes lessons for beginner drone users related to flying drones, autonomous route planning and mapping, field safety, GIS analysis, image correction and processing, and Federal Aviation Administration (FAA) certification and regulations. Training our research partners and students, who are in most cases novice users, is the first step in a larger process to increase participation in a broader project for seagrass monitoring in our case study. While our training program originated in the United States, we discuss our experiences for research partners and communities around the globe to become more confident in introductory drone operations for basic science. In particular, our work targets novice users without a strong background in geographic research or remote sensing. Such training provides technical guidance on the implementation of a drone mapping program for coastal research, and synthesizes our approaches to provide broad guidance for using drones in support of a developing Public Participation GIS process. 
    more » « less
  2. Abstract

    The purpose of this study is to develop an unmanned aerial vehicle (UAV)‐based remote sensing method that can estimate vegetation indicators in arid and semiarid rangelands. This method was used to quantify six rangeland indicators (canopy size, bare soil gap size, plant height, scaled height, vegetation cover, and bare soil cover) in a semiarid grass–shrub ecosystem. The drone‐based estimates were validated with field measurements by using the standard transect methods (gap intercept, drop disk, and line‐point intercept methods) in the spring and summer of 2017. The drone‐based estimates showed strong agreements with in situ measurements in cases where deciduous vegetation (mesquite) had leaves withR2for bare soil gap size and vegetation height of 0.97 and 0.89 in the summer, respectively. The RMSE of bare soil gap size and vegetation height are 0.2 m and 6.72 cm in the summer, respectively. Based on these results, we found that drone‐based remote sensing proved to be an efficient and highly accurate method that serves as a complement to field measurements for rangeland indicator estimation. We discussed the possible applications of drone‐based products on arid and semiarid rangelands: the spatially explicit input of an ecological model, to detect and characterize non‐stationarity, and to detect landscape anisotropy.

    more » « less
  3. Abstract

    Remote sensing instruments that scan have the ability to provide high-resolution spatial measurements of atmospheric boundary layer winds across a region. However, the time required to collect the volume of measurements used to produce this spatial representation of atmospheric winds typically limits the extraction of atmospheric turbulence information using traditional temporal analysis techniques. To overcome this constraint, a spatial turbulence intensity (STI) metric was developed to quantify atmospheric turbulence intensity (TI) through analysis of spatial wind field variability. The methods used to determine STI can be applied throughout the measurement domain to transform the spatially distributed velocity fields to analogous measurement maps of STI. This method enables a comprehensive spatial characterization of atmospheric TI. STI efficacy was examined across a range of wind speeds and atmospheric stability regimes using both single- and dual-Doppler measurements. STI demonstrated the ability to capture rapid fluctuations in TI and was able to discern large-scale TI trends consistent with the early evening transition. The ability to spatially depict atmospheric TI could benefit a variety of research disciplines such as the wind energy industry, where an understanding of wind plant complex flow spatiotemporal variability is limited.

    more » « less
  4. Abstract

    Fog is an important water source for many ecosystems, especially in drylands. Most fog‐vegetation studies focus on individual plant scale; the relationship between fog and vegetation function at larger spatial scales remains unclear. This hinders an accurate prediction of climate change impacts on dryland ecosystems. To this end, we examined the effect of fog on vegetation utilizing both optical and microwave remote sensing‐derived vegetation proxies and fog observations from two locations at Gobabeb and Marble Koppie within the fog‐dominated zone of the Namib Desert. Significantly positive relationships were found between fog and vegetation attributes from optical data at both locations. The positive relationship was also observed for microwave data at Gobabeb. Fog can explain about 10%–30% of variability in vegetation proxies. These findings suggested that fog impacts on vegetation can be quantitatively evaluated from space using remote sensing data, opening a new window for research on fog‐vegetation interactions.

    more » « less
  5. An emerging arena of archaeological research is beginning to deploy remote sensing technologies—including aerial and satellite imagery, digital topographic data, and drone-acquired and terrestrial geophysical data—not only in support of conventional fieldwork but also as an independent means of exploring the archaeological landscape. This article provides a critical review of recent research that relies on an ever-growing arsenal of imagery and instruments to undertake innovative investigations: mapping regional-scale settlement histories, documenting ancient land use practices, revealing the complexity of settled spaces, building nuanced pictures of environmental contexts, and monitoring at-risk cultural heritage. At the same time, the disruptive nature of these technologies is generating complex new challenges and controversies surrounding data access and preservation, approaches to a deluge of information, and issues of ethical remote sensing. As we navigate these challenges, remote sensing technologies nonetheless offer revolutionary ways of interrogating the archaeological record and transformative insights into the human past. 
    more » « less