skip to main content

Title: Summing inflationary logarithms in nonlinear sigma models
A bstract We consider two nonlinear sigma models on de Sitter background which involve the same derivative interactions as quantum gravity but without the gauge issue. The first model contains only a single field, which can be reduced to a free theory by a local field redefinition; the second contains two fields and cannot be so reduced. Loop corrections in both models produce large temporal and spatial logarithms which cause perturbation theory to break down at late times and large distances. Many of these logarithms derive from the “tail” part of the propagator and can be summed using a variant of Starobinsky’s stochastic formalism involving a curvature-dependent effective potential. The remaining logarithms derive from the ultraviolet and can be summed using a variant of the renormalization group based on a special class of curvature-dependent renormalizations. Explicit results are derived at 1-loop and 2-loop orders.
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of High Energy Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Nonlinear sigma models on de Sitter background possess the same kind of derivative interactions as gravity, and show the same sorts of large spacetime logarithms in correlation functions and solutions to the effective field equations. It was recently demonstrated that these logarithms can be resummed by combining a variant of Starobinsky’s stochastic formalism with a variant of the renormalization group. This work considers one of these models and completes two pieces of analysis which were left unfinished: the evolution of the background at two loop order and the one loop beta function.

    Accurate synthetic seismic wavefields can now be computed in 3-D earth models using the spectral element method (SEM), which helps improve resolution in full waveform global tomography. However, computational costs are still a challenge. These costs can be reduced by implementing a source stacking method, in which multiple earthquake sources are simultaneously triggered in only one teleseismic SEM simulation. One drawback of this approach is the perceived loss of resolution at depth, in particular because high-amplitude fundamental mode surface waves dominate the summed waveforms, without the possibility of windowing and weighting as in conventional waveform tomography.

    This can be addressed by redefining the cost-function and computing the cross-correlation wavefield between pairs of stations before each inversion iteration. While the Green’s function between the two stations is not reconstructed as well as in the case of ambient noise tomography, where sources are distributed more uniformly around the globe, this is not a drawback, since the same processing is applied to the 3-D synthetics and to the data, and the source parameters are known to a good approximation. By doing so, we can separate time windows with large energy arrivals corresponding to fundamental mode surface waves. This opens the possibility ofmore »designing a weighting scheme to bring out the contribution of overtones and body waves. It also makes it possible to balance the contributions of frequently sampled paths versus rarely sampled ones, as in more conventional tomography.

    Here we present the results of proof of concept testing of such an approach for a synthetic 3-component long period waveform data set (periods longer than 60 s), computed for 273 globally distributed events in a simple toy 3-D radially anisotropic upper mantle model which contains shear wave anomalies at different scales. We compare the results of inversion of 10 000 s long stacked time-series, starting from a 1-D model, using source stacked waveforms and station-pair cross-correlations of these stacked waveforms in the definition of the cost function. We compute the gradient and the Hessian using normal mode perturbation theory, which avoids the problem of cross-talk encountered when forming the gradient using an adjoint approach. We perform inversions with and without realistic noise added and show that the model can be recovered equally well using one or the other cost function.

    The proposed approach is computationally very efficient. While application to more realistic synthetic data sets is beyond the scope of this paper, as well as to real data, since that requires additional steps to account for such issues as missing data, we illustrate how this methodology can help inform first order questions such as model resolution in the presence of noise, and trade-offs between different physical parameters (anisotropy, attenuation, crustal structure, etc.) that would be computationally very costly to address adequately, when using conventional full waveform tomography based on single-event wavefield computations.

    « less
  3. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information ofmore »an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ .« less
  4. We employ an unregulated computation of the graviton self-energy from gravitons on the de Sitter background to infer the renormalized result. This is used to quantum-correct the linearized Einstein equation. We solve this equation for the potentials that represent the gravitational response to a static, point mass. We find large spatial and temporal logarithmic corrections to the Newtonian potential and to the gravitational shift. Although suppressed by a minuscule loop-counting parameter, these corrections cause perturbation theory to break down at large distances and late times. Another interesting fact is that gravitons induce up to three large logarithms, whereas a loop of massless, minimally coupled scalars produces only a single large logarithm. This is in line with corrections to the graviton mode function: a loop of gravitons induces two large logarithms, whereas a scalar loop gives none.
  5. The random-permutation model (RPM) and the ideal-cipher model (ICM) are idealized models that offer a simple and intuitive way to assess the conjectured standard-model security of many important symmetric-key and hash-function constructions. Similarly, the generic-group model (GGM) captures generic algorithms against assumptions in cyclic groups by modeling encodings of group elements as random injections and allows to derive simple bounds on the advantage of such algorithms. Unfortunately, both well-known attacks, e.g., based on rainbow tables (Hellman, IEEE Transactions on Information Theory ’80), and more recent ones, e.g., against the discrete-logarithm problem (Corrigan-Gibbs and Kogan, EUROCRYPT ’18), suggest that the concrete security bounds one obtains from such idealized proofs are often completely inaccurate if one considers non-uniform or preprocessing attacks in the standard model. To remedy this situation, this work defines the auxiliary-input (AI) RPM/ICM/GGM, which capture both non-uniform and preprocessing attacks by allowing an attacker to leak an arbitrary (bounded-output) function of the oracle’s function table; derives the first non-uniform bounds for a number of important practical applications in the AI-RPM/ICM, including constructions based on the Merkle-Damgård and sponge paradigms, which underly the SHA hashing standards, and for AI-RPM/ICM applications with computational security; and using simpler proofs, recovers the AI-GGMmore »security bounds obtained by Corrigan-Gibbs and Kogan against preprocessing attackers, for a number of assumptions related to cyclic groups, such as discrete logarithms and Diffie-Hellman problems, and provides new bounds for two assumptions. An important step in obtaining these results is to port the tools used in recent work by Coretti et al. (EUROCRYPT ’18) from the ROM to the RPM/ICM/GGM, resulting in very powerful and easy-to-use tools for proving security bounds against non-uniform and preprocessing attacks.« less