skip to main content


Title: How Inflationary Gravitons Affect the Force of Gravity
We employ an unregulated computation of the graviton self-energy from gravitons on the de Sitter background to infer the renormalized result. This is used to quantum-correct the linearized Einstein equation. We solve this equation for the potentials that represent the gravitational response to a static, point mass. We find large spatial and temporal logarithmic corrections to the Newtonian potential and to the gravitational shift. Although suppressed by a minuscule loop-counting parameter, these corrections cause perturbation theory to break down at large distances and late times. Another interesting fact is that gravitons induce up to three large logarithms, whereas a loop of massless, minimally coupled scalars produces only a single large logarithm. This is in line with corrections to the graviton mode function: a loop of gravitons induces two large logarithms, whereas a scalar loop gives none.  more » « less
Award ID(s):
1912484
NSF-PAR ID:
10381591
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Universe
Volume:
8
Issue:
7
ISSN:
2218-1997
Page Range / eLocation ID:
376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study causality in gravitational systems beyond the classical limit. Using on-shell methods, we consider the 1-loop corrections from charged particles to the photon energy-momentum tensor — the self-stress — that controls the quantum interaction between two on-shell photons and one off-shell graviton. The self-stress determines in turn the phase shift and time delay in the scattering of photons against a spectator particle of any spin in the eikonal regime. We show that the sign of the β -function associated to the running gauge coupling is related to the sign of time delay at small impact parameter. Our results show that, at first post-Minkowskian order, asymptotic causality, where the time delay experienced by any particle must be positive, is respected quantum mechanically. Contrasted with asymptotic causality, we explore a local notion of causality, where the time delay is longer than the one of gravitons, which is seemingly violated by quantum effects. 
    more » « less
  2. A bstract We consider single graviton loop corrections to the effective field equation of a massless, minimally coupled scalar on de Sitter background in the simplest gauge. We find a large temporal logarithm in the approach to freeze-in at late times, but no correction to the feeze-in amplitude. We also find a large spatial logarithm (at large distances) in the scalar potential generated by a point source, which can be explained using the renormalization group with one of the higher derivative counterterms regarded as a curvature-dependent field strength renormalization. We discuss how these results set the stage for a project to purge gauge dependence by including quantum gravitational corrections to the source which disturbs the effective field and to the observer who measures it. 
    more » « less
  3. We include the single graviton loop contribution to the linearized Einstein equation. Explicit results are obtained for one loop corrections to the propagation of gravitational radiation. Although suppressed by a minuscule loop-counting parameter, these corrections are enhanced by the square of the number of inflationary e -foldings. One consequence is that perturbation theory breaks down for a very long epoch of primordial inflation. Another consequence is that the one loop correction to the tensor power spectrum might be observable, in the far future, after the full development of 21 cm cosmology. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 2’. 
    more » « less
  4. A bstract We study the renormalization group of generic effective field theories that include gravity. We follow the on-shell amplitude approach, which provides a simple and efficient method to extract anomalous dimensions avoiding complications from gauge redundancies. As an invaluable tool we introduce a modified helicity $$ \tilde{h} $$ h ˜ under which gravitons carry one unit instead of two. With this modified helicity we easily explain old and uncover new non-renormalization theorems for theories including gravitons. We provide complete results for the one-loop gravitational renormalization of a generic minimally coupled gauge theory with scalars and fermions and all orders in M Pl , as well as for the renormalization of dimension-six operators including at least one graviton, all up to four external particles. 
    more » « less
  5. null (Ed.)
    A bstract We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of “extended” warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a ∼ O (10) TeV (new, “intermediate”) brane, whereas the SM gauge fields (and gravity) propagate further down to the ∼ O (TeV) infrared brane. Such a framework suppresses flavor violation stemming from KK particle effects, while keeping the KK gauge bosons and gravitons accessible to the LHC. We find that the signals from KK graviton are significantly different than in the standard warped model. This is because the usually dominant decay modes of KK gravitons into top quark, Higgs and longitudinal W/Z particles are suppressed by the above spatial separation between these two sets of particles, thus other decay channels are allowed to shine themselves. In particular, we focus on two novel decay channels of the KK graviton. The first one is the decay into a pair of radions, each of which decays (dominantly) into a pair of SM gluons, resulting in a resonant 4-jet final state consisting of two pairs of dijet resonance. On the other hand, if the radion is heavier and/or KK gluon is lighter, then the KK graviton mostly decays into a KK gluon and a SM gluon. The resulting KK gluon has a significant decay branching fraction into radion and SM gluon, thereby generating (again) a 4-jet signature, but with a different underlying event topology, i.e., featuring now three different resonances. We demonstrate that the High-Luminosity LHC (HL-LHC) has sensitivity to KK graviton of (up to) ∼ 4 TeV in both channels, in the specific model with only gluon field (and gravity) propagating in the extended bulk, whereas it is unlikely to have sensitivity in the standard dijet resonance search channel from KK graviton decay into two gluons. 
    more » « less