skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining the COVID-19 case growth rate due to visitor vs. local mobility in the United States using machine learning
Abstract Travel patterns and mobility affect the spread of infectious diseases like COVID-19. However, we do not know to what extent local vs. visitor mobility affects the growth in the number of cases. This study evaluates the impact of state-level local vs. visitor mobility in understanding the growth with respect to the number of cases for COVID spread in the United States between March 1, 2020, and December 31, 2020. Two metrics, namely local and visitor transmission risk, were extracted from mobility data to capture the transmission potential of COVID-19 through mobility. A combination of the three factors: the current number of cases, local transmission risk, and the visitor transmission risk, are used to model the future number of cases using various machine learning models. The factors that contribute to better forecast performance are the ones that impact the number of cases. The statistical significance of the forecasts is also evaluated using the Diebold–Mariano test. Finally, the performance of models is compared for three waves across all 50 states. The results show that visitor mobility significantly impacts the case growth by improving the prediction accuracy by 33.78%. We also observe that the impact of visitor mobility is more pronounced during the first peak, i.e., March–June 2020.  more » « less
Award ID(s):
1650551 2027688 1429526
PAR ID:
10381820
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new confirmed cases with one week of delay. The analysis categorizes counties based on the number of confirmed COVID-19 cases and examines co-location patterns within and across groups. Significant segregation is found among different county groups. The results suggest that within-group co-location probabilities (e.g., co-location probabilities among counties with high numbers of cases) remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties. 
    more » « less
  2. Abstract Human mobility plays an important role in the dynamics of infectious disease spread. Evidence from the initial nationwide lockdowns for COVID− 19 indicates that restricting human mobility is an effective strategy to contain the spread. While a direct correlation was observed early on, it is not known how mobility impacted COVID− 19 infection growth rates once lockdowns are lifted, primarily due to modulation by other factors such as face masks, social distancing, and the non-linear patterns of both mobility and infection growth. This paper introduces a piece-wise approach to better explore the phase-wise association between state-level COVID− 19 incidence data and anonymized mobile phone data for various states in the United States. Prior literature analyzed the linear correlation between mobility and the number of cases during the early stages of the pandemic. However, it is important to capture the non-linear dynamics of case growth and mobility to be usable for both tracking and forecasting COVID− 19 infections, which is accomplished by the piece-wise approach. The associations between mobility and case growth rate varied widely for various phases of the epidemic curve when the stay-at-home orders were lifted. The mobility growth patterns had a strong positive association of 0.7 with the growth in the number of cases, with a lag of 5 to 7 weeks, for the fast-growth phase of the pandemic, for only 20 states that had a peak between July 1st and September 30, 2020. Overall though, mobility cannot be used to predict the rise in the number of cases after initial lockdowns have been lifted. Our analysis explores the gradual diminishing value of mobility associations in the later stage of the outbreak. Our analysis indicates that the relationship between mobility and the increase in the number of cases, once lockdowns have been lifted, is tenuous at best and there is no strong relationship between these signals. But we identify the remnants of the last associations in specific phases of the growth curve. 
    more » « less
  3. null (Ed.)
    Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic. 
    more » « less
  4. Kainz, W.; Manley, E.; Delmelle, E.; Birkin, M.; Gahegan, M.; Kwan, M-P. (Ed.)
    As of March 2021, the State of Florida, U.S.A. had accounted for approximately 6.67% of total COVID-19 (SARS-CoV-2 coronavirus disease) cases in the U.S. The main objective of this research is to analyze mobility patterns during a three month period in summer 2020, when COVID-19 case numbers were very high for three Florida counties, Miami-Dade, Broward, and Palm Beach counties. To investigate patterns, as well as drivers, related to changes in mobility across the tri-county region, a random forest regression model was built using sociodemographic, travel, and built environment factors, as well as COVID-19 positive case data. Mobility patterns declined in each county when new COVID-19 infections began to rise, beginning in mid-June 2020. While the mean number of bar and restaurant visits was lower overall due to closures, analysis showed that these visits remained a top factor that impacted mobility for all three counties, even with a rise in cases. Our modeling results suggest that there were mobility pattern differences between counties with respect to factors relating, for example, to race and ethnicity (different population groups factored differently in each county),as well as social distancing or travel-related factors (e.g., staying at home behaviors) over the two time periods prior to and after the spike of COVID-19 cases. 
    more » « less
  5. Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general. 
    more » « less