Switching of magnetization by spin–orbit torque in the (Ga,Mn)(As,P) film was studied with currents along ⟨100⟩ crystal directions and an in-plane magnetic field bias. This geometry allowed us to identify the presence of two independent spin–orbit-induced magnetic fields: the Rashba field and the Dresselhaus field. Specifically, we observe that when the in-plane bias field is along the current (I[Formula: see text]H bias ), switching is dominated by the Rashba field, while the Dresselhaus field dominates magnetization reversal when the bias field is perpendicular to the current (I ⊥ H bias ). In our experiments, the magnitudes of the Rashba and Dresselhaus fields were determined to be 2.0 and 7.5 Oe, respectively, at a current density of 8.0 × 10 5 A/cm 2 .
more »
« less
Spin–orbit torque switching in a single (Ga,Mn)(As,P) layer with perpendicular magnetic anisotropy
We report the observation of current induced spin–orbit torque (SOT) switching of magnetization in a (Ga,Mn)(As,P) film using perpendicular magnetic anisotropy. Complete SOT switching of magnetization was achieved with current densities as low as 7.4 × 105 A/cm2, which is one to two orders of magnitude smaller than that normally used for SOT switching in ferromagnet/heavy metal bilayer systems. The observed magnetization switching chirality during current scans is consistent with SOT arising from spin polarization caused by the Dresselhaus-type spin–orbit-induced (SOI) fields. The magnitudes of effective SOI fields corresponding to the SOT were obtained from shifts of switching angles in angular dependent Hall measurements observed for opposite current polarities. By measuring effective SOI fields for the [11̄0] and the [110] current directions, we were then able to separate the values of the Dresselhaus-type (HeffD) and Rashba (HeffR) SOI fields. At a current density of 6.0 × 105 A/cm2, these values are HeffD=6.73Oe and HeffR=1.31Oe, respectively. The observed ratio of about 5:1 between Dresselhaus-type and Rashba SOI fields is similar to that observed in a GaMnAs film with an in-plane magnetic anisotropy.
more »
« less
- Award ID(s):
- 1905277
- PAR ID:
- 10595078
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Spin–orbit-induced (SOI) effective magnetic field in GaMnAs film with in-plane magnetic anisotropy has been investigated by planar Hall effect measurements. The presence of SOI field was identified by a shift between planar Hall resistance (PHR) hystereses observed with positive and negative currents. The difference of switching fields occurring between the two current polarities, which is determined by the strength of the SOI field, is shown to depend on the external field direction. In this paper we have developed a method for obtaining the magnitude of the SOI fields based on magnetic free energy that includes the effects of magnetic anisotropy and the SOI field. Using this approach, the SOI field for a given current density was accurately obtained by fitting to the observed dependence of the switching fields on the applied field directions. Values of the SOI field obtained with field scan PHR measurements give results that are consistent with those obtained by analyzing the angular dependence of PHR, indicating the reliability of the field scan PHR method for quantifying the SOI-field in GaMnAs films. The magnitude of the SOI field systematically increases with increasing current density, demonstrating the usefulness of SOI fields for manipulation of magnetization by current in GaMnAs films.more » « less
-
A combination of spin–orbit coupling and electron–electron interaction gives rise to a new type of collective spin modes, which correspond to oscillations of magnetization even in the absence of the external magnetic field. We review recent progress in theoretical understanding and experimental observation of such modes, focusing on three examples of real-life systems: a two-dimensional electron gas with Rashba and/or Dresselhaus spin–orbit coupling, graphene with proximity-induced spin–orbit coupling, and the Dirac state on the surface of a three-dimensional topological insulator. This paper is dedicated to the 95th birthday of Professor Emmanuel I. Rashba.more » « less
-
Switching of perpendicular magnetization via spin–orbit torque (SOT) is of particular interest in the development of non-volatile magnetic random access memory (MRAM) devices. We studied current-induced magnetization switching of Ir/GdFeCo/Cu/Pt heterostructures in a Hall cross geometry as a function of the in-plane applied magnetic field. Remarkably, magnetization switching is observed at zero applied field. This is shown to result from the competition between SOT, the Oersted field generated by the charge current, and the material's coercivity. Our results show a means of achieving zero-field switching that can impact the design of future spintronics devices, such as SOT-MRAM.more » « less
-
Increasing dampinglike spin-orbit torque (SOT) is both of fundamental importance for enabling new research into spintronics phenomena and also technologically urgent for advancing low-power spin-torque memory, logic, and oscillator devices. Here, we demonstrate that enhancing interfacial scattering by inserting ultra-thin layers within a spin Hall metals with intrinsic or side-jump mechanisms can significantly enhance the spin Hall ratio. The dampinglike SOT was enhanced by a factor of 2 via sub-monolayer Hf insertion, as evidenced by both harmonic response measurements and current- induced switching of in-plane magnetized magnetic memory devices with the record low critical switching current of ~73 μA (switching current density ≈ 3.6×106 A/cm2). This work demonstrates a very effective strategy for maximizing dampinglike SOT for low-power spin-torque devices.more » « less
An official website of the United States government
