skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing, Analyzing, and Evaluating Vehicular Lane Keeping Algorithms Using Electric Vehicles
Robust lane-following algorithms are one of the main challenges in developing effective automated vehicles. In this work, a team of four undergraduate students designed and evaluated several automated lane-following algorithms using computer vision as part of a Research Experience for Undergraduates program funded by the National Science Foundation. The developed algorithms use the Robot Operating System (ROS) and the OpenCV library in Python to detect lanes and implement the lane-following logic on the road. The algorithms were tested on a real-world test course using a street-legal vehicle with a high-definition camera as input and a drive-by-wire system for output. Driving data were recorded to compare the performance of human driving to that of the self-driving algorithms on the basis of three criteria: lap completion time, lane positioning infractions, and speed limit infractions. The evaluation of the data showed that the human drivers successfully completed every lap with zero infractions at a 100% success rate in varied weather conditions, whereas, our most reliable algorithms had a success rate of at least 70% with some lane positioning infractions and at lower speeds.  more » « less
Award ID(s):
2150292 2150096
PAR ID:
10381870
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Vehicles
Volume:
4
Issue:
4
ISSN:
2624-8921
Page Range / eLocation ID:
1012 to 1041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reliable lane-following is one of the most important tasks for an automated vehicle or ADAS. The intent of this project was to design and evaluate multiple lane-following algorithms for an automated vehicle using computer vision. The implemented algorithms' performance was then evaluated on a testing course and compared with a human driver. ROS and OpenCV were used to detect and follow lanes on the road. A street-legal vehicle with a high-definition camera and drive-by-wire system was used to implement and evaluate driving data. Each algorithm was evaluated based on time for completion, speed limit infractions, and lane positioning infractions. The recorded evaluation data determined the most reliable lane-following algorithm. All of our algorithms had a success rate of at least 60% on certain lanes of the testing course. 
    more » « less
  2. Advanced systems that require shared control are becoming increasingly pervasive. One advantage of a shared control approach is that the human and machine work together to accomplish safe operations. However, data about the human is needed to implement successful strategies. The goal of this study was to quantify naturalistic driving by collecting performance and physiological data during manual, open-loop driving. Sixteen participants performed a single drive that included four sudden obstacles of increasing difficulty (road debris, construction, inclement weather, and an animal). Participants were asked to traverse each obstacle using self-employed judgement and strategies. Action selection, lane deviation, speed, and heart rate data were recorded. Results showed two distinct driving strategies for avoiding the moving obstacle/animal (left vs. right lane navigation). Also, maximum speed was affected by obstacle type, but heart rate variability was not. Results can be used to inform shared control algorithms designed to combat poor driving performance. 
    more » « less
  3. Connected and automated vehicles (CAVs) are sup- posed to share the road with human-driven vehicles (HDVs) in a foreseeable future. Therefore, considering the mixed traffic envi- ronment is more pragmatic, as the well-planned operation of CAVs may be interrupted by HDVs. In the circumstance that human behaviors have significant impacts, CAVs need to under- stand HDV behaviors to make safe actions. In this study, we develop a driver digital twin (DDT) for the online prediction of personalized lane-change behavior, allowing CAVs to predict surrounding vehicles’ behaviors with the help of the digital twin technology. DDT is deployed on a vehicle-edge–cloud architec- ture, where the cloud server models the driver behavior for each HDV based on the historical naturalistic driving data, while the edge server processes the real-time data from each driver with his/her digital twin on the cloud to predict the personalized lane- change maneuver. The proposed system is first evaluated on a human-in-the-loop co-simulation platform, and then in a field implementation with three passenger vehicles driving along an on/off ramp segment connecting to the edge server and cloud through the 4G/LTE cellular network. The lane-change intention can be recognized in 6 s on average before the vehicle crosses the lane separation line, and the Mean Euclidean Distance between the predicted trajectory and GPS ground truth is 1.03 m within a 4-s prediction window. Compared to the general model, using a personalized model can improve prediction accuracy by 27.8%. The demonstration video of the proposed system can be watched at https://youtu.be/5cbsabgIOdM. 
    more » « less
  4. Preceding vehicles typically dominate the movement of following vehicles in traffic systems, thereby significantly influencing the efficacy of eco-driving control that concentrates on vehicle speed optimization. To potentially mitigate the negative effect of preceding vehicles on eco-driving control at the signalized intersection, this study proposes an overtaking-enabled eco-approach control (OEAC) strategy. It combines driving lane planning and speed optimization for connected and automated vehicles to relax the first-in-first-out queuing policy at the signalized intersection, minimizing the host vehicle’s energy consumption and travel delay. The OEAC adopts a two-stage receding horizon control framework to derive optimal driving trajectories for adapting to dynamic traffic conditions. In the first stage, the driving lane optimization problem is formulated as a Markov decision process and solved using dynamic programming, which takes into account the uncertain disturbance from preceding vehicles. In the second stage, the vehicle’s speed trajectory with the minimal driving cost is optimized rapidly using Pontryagin’s minimum principle to obtain the closed-form analytical optimal solution. Extensive simulations are conducted to evaluate the effectiveness of the OEAC. The results show that the OEAC is excellent in driving cost reduction over constant speed and regular eco-approach and departure strategies in various traffic scenarios, with an average improvement of 20.91% and 5.62%, respectively. 
    more » « less
  5. null (Ed.)
    This study focuses on how to improve the merge control prior to lane reduction points due to either accidents or constructions. A Cooperative Car-following and Merging (CCM) control strategy is proposed considering the coexistence of Automated Vehicles (AVs) and Human-4 Driven Vehicles (HDVs). CCM introduces a modified/generalized Cooperative Adaptive Cruise Control (CACC) for vehicle longitudinal control prior to lane reduction points. It also takes courtesy into account to ensure that AVs behave responsibly and ethically. CCM is evaluated using microscopic traffic simulation and compared with no control and CACC merge strategies. The results show that CCM consistently generates the lowest delays and highest throughputs approaching the theoretical capacity. Its safety benefits are also found to be significant based on vehicle trajectories and density maps. AVs in this study do not need to be fully automated and can be at Level-1 automation. CCM only requires automated longitudinal control such as Adaptive Cruise Control (ACC) and information sharing among vehicles, and ACC is already commercially available on many new vehicles. Also, it does not need 100% ACC penetration, presenting itself as a promising and practical solution for improving traffic operations in lane reduction transition areas such as highway work zones. 
    more » « less