skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing, Analyzing, and Evaluating Self-Drive Algorithms Using Electric Vehicles on a Test Course
Reliable lane-following is one of the most important tasks for an automated vehicle or ADAS. The intent of this project was to design and evaluate multiple lane-following algorithms for an automated vehicle using computer vision. The implemented algorithms' performance was then evaluated on a testing course and compared with a human driver. ROS and OpenCV were used to detect and follow lanes on the road. A street-legal vehicle with a high-definition camera and drive-by-wire system was used to implement and evaluate driving data. Each algorithm was evaluated based on time for completion, speed limit infractions, and lane positioning infractions. The recorded evaluation data determined the most reliable lane-following algorithm. All of our algorithms had a success rate of at least 60% on certain lanes of the testing course.  more » « less
Award ID(s):
2150292 2150096
PAR ID:
10386931
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS)
Page Range / eLocation ID:
687 to 692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robust lane-following algorithms are one of the main challenges in developing effective automated vehicles. In this work, a team of four undergraduate students designed and evaluated several automated lane-following algorithms using computer vision as part of a Research Experience for Undergraduates program funded by the National Science Foundation. The developed algorithms use the Robot Operating System (ROS) and the OpenCV library in Python to detect lanes and implement the lane-following logic on the road. The algorithms were tested on a real-world test course using a street-legal vehicle with a high-definition camera as input and a drive-by-wire system for output. Driving data were recorded to compare the performance of human driving to that of the self-driving algorithms on the basis of three criteria: lap completion time, lane positioning infractions, and speed limit infractions. The evaluation of the data showed that the human drivers successfully completed every lap with zero infractions at a 100% success rate in varied weather conditions, whereas, our most reliable algorithms had a success rate of at least 70% with some lane positioning infractions and at lower speeds. 
    more » « less
  2. We analyze the effect of a bicycle lane on traffic speeds. Computer vision techniques are used to detect and classify the speed and trajectory of over 9,000 motor-vehicles at an intersection that was part of a pilot demonstration in which a bicycle lane was temporarily implemented. After controlling for direction, hourly traffic flow, and the behavior of the vehicle (i.e., free-flowing or stopped at a red light), we found that the effect of the delineator-protected bicycle lane (marked with traffic cones and plastic delineators) was associated with a 28 % reduction in average maximum speeds and a 21 % decrease in average speeds for vehicles turning right. For those going straight, a smaller reduction of up to 8 % was observed. Traffic moving perpendicular to the bicycle lane experienced no decrease in speeds. Painted-only bike lanes were also associated with a small speed reduction of 11–15 %, but solely for vehicles turning right. These findings suggest an important secondary benefit of bicycle lanes: by having a traffic calming effect, delineated bicycle lanes may decrease the risk and severity of crashes for pedestrians and other road users. 
    more » « less
  3. Exclusive bus lane strategy is widely adopted in many cities to improve bus operation effciency and reliability. With the development of connected vehicle technologies, the dynamic bus lane (DBL) strategy was proposed, with allowing general vehicles to share use of the bus lane to improve traffc effciency in general purpose lanes (GPLs). Previous studies have rarely considered the eco-driving strategy of connected and automated vehicles/buses (CAVs/CABs) in GPLs under the mixed traffc conditions, and how to ensure bus priority with DBL control. In this study, a novel DBL control strategy was developed under the partially connected vehicle environment. A trajectory planning method while considering the joint effects of bus stop and signal phase for CAB was adopted, an eco-driving strategy for CAVs in GPL was proposed using a trigonometry trajectory planning method. And a novel DBL control method was established by integrated trajectory planning for both the CAVs and CABs to ensure bus operation priority. Numerical experiments were conducted to evaluate performance of the proposed novel DBL control in terms of travel time and energy consumption of general vehicles at the different levels of CAV market penetration rates (MPRs). Results indicated that about 16%-42% energy savings can be achieved with MPR varying from 20% to 100%, and the travel time can be improved by about 4%-10%. Meanwhile, sensitivity analysis was conducted to quantify the impacts of key parameters, including vehicle target speeds, heterogeneous traffc fow, random arrival interval of cars, position of bus stop, traffc volume in GPL 
    more » « less
  4. Flocking control for multi-agent automated vehicles has attracted more research interest recently. However, one significant challenge is that the common use of point-shaped virtual leaders giving uniform navigations is unsuitable for vehicle motions with varying relative positions and orientations on multi-lane roads, particularly on curved sections. Considering the practical movements of multi-agent ground vehicles, this paper proposes a novel type of polyline-shaped leader(s) that aligns with multi-lane roads. Specifically, the polyline-shaped leader is composed of line segments that consider road curvatures, different lanes, and the flocking lattice configuration. Moreover, an artificial flow guidance method is applied to provide the direction of velocity references to ensure vehicles move within their respective lanes during the formed flocking. Simulation results demonstrate that the proposed approach can successfully regulate vehicles to drive in their lanes in coordinated motion, which gives fewer structural deviations on curved roads compared to the case with the point-shaped leader. 
    more » « less
  5. null (Ed.)
    Given the aging infrastructure and the anticipated growing number of highway work zones in the U.S.A., it is important to investigate work zone merge control, which is critical for improving work zone safety and capacity. This paper proposes and evaluates a novel highway work zone merge control strategy based on cooperative driving behavior enabled by artificial intelligence. The proposed method assumes that all vehicles are fully automated, connected, and cooperative. It inserts two metering zones in the open lane to make space for merging vehicles in the closed lane. In addition, each vehicle in the closed lane learns how to adjust its longitudinal position optimally to find a safe gap in the open lane using an off-policy soft actor critic reinforcement learning (RL) algorithm, considering its surrounding traffic conditions. The learning results are captured in convolutional neural networks and used to control individual vehicles in the testing phase. By adding the metering zones and taking the locations, speeds, and accelerations of surrounding vehicles into account, cooperation among vehicles is implicitly considered. This RL-based model is trained and evaluated using a microscopic traffic simulator. The results show that this cooperative RL-based merge control significantly outperforms popular strategies such as late merge and early merge in terms of both mobility and safety measures. It also performs better than a strategy assuming all vehicles are equipped with cooperative adaptive cruise control. 
    more » « less