Humans use all surfaces of the hand for contact-rich manipulation. Robot hands, in contrast, typically use only the fingertips, which can limit dexterity. In this work, we leveraged a potential energy–based whole-hand manipulation model, which does not depend on contact wrench modeling like traditional approaches, to design a robotic manipulator. Inspired by robotic caging grasps and the high levels of dexterity observed in human manipulation, a metric was developed and used in conjunction with the manipulation model to design a two-fingered dexterous hand, the Model W. This was accomplished by simulating all planar finger topologies composed of open kinematic chains of up to three serial revolute and prismatic joints, forming symmetric two-fingered hands, and evaluating their performance according to the metric. We present the best design, an unconventional robot hand capable of performing continuous object reorientation, as well as repeatedly alternating between power and pinch grasps—two contact-rich skills that have often eluded robotic hands—and we experimentally characterize the hand’s manipulation capability. This hand realizes manipulation motions reminiscent of thumb–index finger manipulative movement in humans, and its topology provides the foundation for a general-purpose dexterous robot hand.
more »
« less
Learning to Navigate by Pushing
In this work, we investigate a form of dynamic contact-rich locomotion in which a robot pushes off from obstacles in order to move through its environment. We present a reflex-based approach that switches between optimized hand- crafted reflex controllers and produces smooth and predictable motions. In contrast to previous work, our approach does not rely on periodic movements, complex models of robot and contact dynamics, or extensive hand tuning. We demonstrate the effectiveness of our approach and evaluate its performance compared to a standard model-free RL algorithm. We identify continuous clusters of similar behaviours, which allows us to successfully transfer different push-off motions directly from simulation to a physical robot without further retraining.
more »
« less
- Award ID(s):
- 1925130
- PAR ID:
- 10382575
- Date Published:
- Journal Name:
- international conference on robotics and automation (ICRA)
- Page Range / eLocation ID:
- 171 to 177
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we are interested in startle reflex detection with WiFi signals. We propose that two parameters related to the received signal bandwidth, maximum normalized bandwidth and bandwidth-intense duration, can successfully detect reflexes and robustly differentiate them from non-reflex events, even from those that involve intense body motions (e.g., certain exercises). In order to confirm this, we need a massive RF reflex dataset which would be prohibitively laborious to collect. On the other hand, there are many available reflex/non-reflex videos online. We then propose an efficient way of translating the content of a video to the bandwidth of the corresponding received RF signal that would have been measured if there was a link near the event in the video, by drawing analogies between our problem and the classic bandwidth modeling work of J. Carson in the context of analog FM radios (Carson's Rule). This then allows us to translate online reflex/non-reflex videos to an instant large RF bandwidth dataset, and characterize optimum 2D reflex/non-reflex decision regions accordingly, to be used during real operation with WiFi. We extensively test our approach with 203 reflex events, 322 non-reflex events (including 142 intense body motion events), over four areas (including several through-wall ones), and with 15 participants, achieving a correct reflex detection rate of 90.15% and a false alarm rate of 2.49% (all events are natural). While the paper is extensively tested with startle reflexes, it is also applicable to sport-type reflexes, and is thus tested with sport-related reflexes as well. We further show reflex detection with multiple people simultaneously engaged in a series of activities. Optimality of the proposed design is also demonstrated experimentally. Finally, we conduct experiments to show the potential of our approach for providing cost-effective and quantifiable metrics in sports, by quantifying a goalkeeper's reaction. Overall, our results confirm a fast, robust, and cost-effective reflex detection system, without collecting any RF training data, or training a neural network.more » « less
-
null (Ed.)In spite of substantial progress, robust and dexterous in-hand manipulation remains a robotics grand challenge. Recent research has shown that optimization of robot hand morphology for specific tasks can result in custom hand designs that are low-cost, easy to maintain, and highly capable. However, the resulting manipulation strategies may not be very robust or generalizable in real-world situations. This paper shows that robustness can be improved dramatically by optimizing controls instead of contact force / trajectories and by considering uncertainty explicitly during the optimization process. We present a evolutionary algorithm based pipeline for co-optimizing hand morphology and control strategy over families of problems and initial states in order to achieve robust in-hand manipulation. We demonstrate that this approach produces robust results which utilize all surfaces of the hand and surprising dynamic motions. We showcase the advantage of optimizing joint limit values to create robust designs. Furthermore, we demonstrate that our approach is complementary to trajectory optimization based approaches and can be utilized to improve robustness of such results as well as to create custom hand designs from scratch. Results are shown for repositioning and reorienting diverse objects relative to the palm of the hand.more » « less
-
As robots move from the laboratory into the real world, motion planning will need to account for model uncertainty and risk. For robot motions involving intermittent contact, planning for uncertainty in contact is especially important, as failure to successfully make and maintain contact can be catastrophic. Here, we model uncertainty in terrain geometry and friction characteristics, and combine a risk-sensitive objective with chance constraints to provide a trade-off between robustness to uncertainty and constraint satisfaction with an arbitrarily high feasibility guarantee. We evaluate our approach in two simple examples: a push-block system for benchmarking and a single-legged hopper. We demonstrate that chance constraints alone produce trajectories similar to those produced using strict complementarity constraints; however, when equipped with a robust objective, we show the chance constraints can mediate a trade-off between robustness to uncertainty and strict constraint satisfaction. Thus, our study may represent an important step towards reasoning about contact uncertainty in motion planning.more » « less
-
null (Ed.)We present a novel, low cost framework for reconstructing surface contact movements during in-hand manipulations. Unlike many existing methods focused on hand pose tracking, ours models the behavior of contact patches, and by doing so is the first to obtain detailed contact tracking estimates for multi-contact manipulations. Our framework is highly accessible, requiring only low cost, readily available paint materials, a single RGBD camera, and a simple, deterministic interpolation algorithm. Despite its simplicity, we demonstrate the framework’s effectiveness over the course of several manipulations on three common household items. Finally, we demonstrate the use of a generated contact time series in manipulation learning for a simulated robot hand.more » « less
An official website of the United States government

