skip to main content

Search for: All records

Award ID contains: 1925130

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a novel, low cost framework for reconstructing surface contact movements during in-hand manipulations. Unlike many existing methods focused on hand pose tracking, ours models the behavior of contact patches, and by doing so is the first to obtain detailed contact tracking estimates for multi-contact manipulations. Our framework is highly accessible, requiring only low cost, readily available paint materials, a single RGBD camera, and a simple, deterministic interpolation algorithm. Despite its simplicity, we demonstrate the framework’s effectiveness over the course of several manipulations on three common household items. Finally, we demonstrate the use of a generated contact time seriesmore »in manipulation learning for a simulated robot hand.« less
    Free, publicly-accessible full text available October 1, 2022
  2. As autonomous robots interact and navigate around real-world environments such as homes, it is useful to reliably identify and manipulate articulated objects, such as doors and cabinets. Many prior works in object articulation identification require manipulation of the object, either by the robot or a human. While recent works have addressed predicting articulation types from visual observations alone, they often assume prior knowledge of category-level kinematic motion models or sequence of observations where the articulated parts are moving according to their kinematic constraints. In this work, we propose FormNet, a neural network that identifies the articulation mechanisms between pairs ofmore »object parts from a single frame of an RGB-D image and segmentation masks. The network is trained on 100k synthetic images of 149 articulated objects from 6 categories. Synthetic images are rendered via a photorealistic simulator with domain randomization. Our proposed model predicts motion residual flows of object parts, and these flows are used to determine the articulation type and parameters. The network achieves an articulation type classification accuracy of 82.5% on novel object instances in trained categories. Experiments also show how this method enables generalization to novel categories and can be applied to real-world images without fine-tuning.« less
    Free, publicly-accessible full text available October 1, 2022
  3. In this paper, we present a planning and control framework for dynamic, whole-body motions for dynamically stable shape-accelerating mobile manipulators. This class of robots are inherently unstable and require careful coordination between the upper and lower body to maintain balance while performing manipulation tasks. Solutions to this problem either use a complex, full-body nonlinear dynamic model of the robot or a highly simplified model of the robot. Here we explore the use of centroidal dynamics which has recently become a popular approach for designing balancing controllers for humanoid robots. We describe a framework where we first solve a trajectory optimizationmore »problem offline. We define balancing for a ballbot in terms of the centroidal momentum instead of other approaches like ZMP or angular velocity that are more commonly used. The generated motion is tracked using a PD- PID cascading balancing controller for the body and torque controller for the arms. We demonstrate that this framework is capable of generating dynamic motion plans and control inputs with examples on the CMU ballbot, a single-spherical-wheeled balancing mobile manipulator.« less
    Free, publicly-accessible full text available October 1, 2022
  4. There has been an explosion of ideas in soft robotics over the past decade, resulting in unprecedented opportunities for end effector design. Soft robot hands offer benefits of low-cost, compliance, and customized design, with the promise of dexterity and robustness. The space of opportunities is vast and exciting. However, new tools are needed to understand the capabilities of such manipulators and to facilitate manipulation planning with soft manipulators that exhibit free-form deformations. To address this challenge, we introduce a sampling based approach to discover and model continuous families of manipulations for soft robot hands. We give an overview of themore »soft foam robots in production in our lab and describe novel algorithms developed to characterize manipulation families for such robots. Our approach consists of sampling a space of manipulation actions, constructing Gaussian Mixture Model representations covering successful regions, and refining the results to create continuous successful regions representing the manipulation family. The space of manipulation actions is very high dimensional; we consider models with and without dimensionality reduction and provide a rigorous approach to compare models across different dimensions by comparing coverage of an unbiased test dataset in the full dimensional parameter space. Results show that some dimensionality reduction is typically useful in populating the models, but without our technique, the amount of dimensionality reduction to use is difficult to predict ahead of time and can depend on the hand and task. The models we produce can be used to plan and carry out successful, robust manipulation actions and to compare competing robot hand designs.« less
  5. Humans leverage the dynamics of the environment and their own bodies to accomplish challenging tasks such as grasping an object while walking past it or pushing off a wall to turn a corner. Such tasks often involve switching dynamics as the robot makes and breaks contact. Learning these dynamics is a challenging problem and prone to model inaccuracies, especially near contact regions. In this work, we present a framework for learning composite dynamical behaviors from expert demonstrations. We learn a switching linear dynamical model with contacts encoded in switching conditions as a close approximation of our system dynamics. We thenmore »use discrete-time LQR as the differentiable policy class for data-efficient learning of control to develop a control strategy that operates over multiple dynamical modes and takes into account discontinuities due to contact. In addition to predicting interactions with the environment, our policy effectively reacts to inaccurate predictions such as unanticipated contacts. Through simulation and real world experiments, we demonstrate generalization of learned behaviors to different scenarios and robustness to model inaccuracies during execution.« less
  6. Achieving dexterous in-hand manipulation with robot hands is an extremely challenging problem, in part due to current limitations in hardware design. One notable bottleneck hampering the development of improved hardware for dexterous manipulation is the lack of a standardized benchmark for evaluating in-hand dexterity. In order to address this issue, we establish a new benchmark for evaluating in- hand dexterity, specifically for humanoid type robot hands: the Elliott and Connolly Benchmark. This benchmark is based on a classification of human manipulations established by Elliott and Connolly, and consists of 13 distinct in-hand manipulation patterns. We define qualitative and quantitative metricsmore »for evaluation of the benchmark, and provide a detailed testing protocol. Additionally, we introduce a dexterous robot hand - the CMU Foam Hand III - which is evaluated using the benchmark, successfully completing 10 of the 13 manipulation patterns and outperforming human hand baseline results for several of the patterns.« less
  7. To perform manipulation tasks in the real world, robots need to operate on objects with various shapes, sizes and without access to geometric models. To achieve this it is often infeasible to train monolithic neural network policies across such large variations in object properties. Towards this generalization challenge, we propose to learn modular task policies which compose object-centric task-axes controllers. These task-axes controllers are parameterized by properties associated with underlying objects in the scene. We infer these controller parameters directly from visual input using multi- view dense correspondence learning. Our overall approach provides a simple and yet powerful framework formore »learning manipulation tasks. We empirically evaluate our approach on 3 different manipulation tasks and show its ability to generalize to large variance in object size, shape and geometry.« less
  8. Manipulation tasks can often be decomposed into multiple subtasks performed in parallel, e.g., sliding an object to a goal pose while maintaining con- tact with a table. Individual subtasks can be achieved by task-axis controllers defined relative to the objects being manipulated, and a set of object-centric controllers can be combined in an hierarchy. In prior works, such combinations are defined manually or learned from demonstrations. By contrast, we propose using reinforcement learning to dynamically compose hierarchical object-centric controllers for manipulation tasks. Experiments in both simulation and real world show how the proposed approach leads to improved sample efficiency, zero-shotmore »generalization to novel test environments, and simulation-to-reality transfer with- out fine-tuning.« less
  9. Training robotic policies in simulation suffers from the sim-to-real gap, as simulated dynamics can be different from real-world dynamics. Past works tackled this problem through domain randomization and online system-identification. The former is sensitive to the manually-specified training distribution of dynamics parameters and can result in behaviors that are overly conservative. The latter requires learning policies that concurrently perform the task and generate useful trajectories for system identification. In this work, we propose and analyze a framework for learning exploration policies that explicitly perform task-oriented exploration actions to identify task-relevant system parameters. These parameters are then used by model-based trajectorymore »optimization algorithms to perform the task in the real world. We instantiate the framework in simulation with the Linear Quadratic Regulator as well as in the real world with pouring and object dragging tasks. Experiments show that task-oriented exploration helps model-based policies adapt to systems with initially unknown parameters, and it leads to better task performance than task-agnostic exploration.« less