skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Output-only identification of self-excited systems using discrete-time Lur'e models with application to a gas-turbine combustor
A self-excited system is a nonlinear system with the property that a constant input yields a bounded, nonconvergent response. Nonlinear identification of self-excited systems is considered using a Lur'e model structure, where a linear model is connected in feedback with a nonlinear feedback function. To facilitate identification, the nonlinear feedback function is assumed to be continuous and piecewise affine (CPA). The present paper uses least-squares optimization to estimate the coefficients of the linear dynamics and the slope vector of the CPA nonlinearity, as well as mixed-integer optimization to estimate the order of the linear dynamics and the breakpoints of the CPA function. The proposed identification technique requires only output data, and thus no measurement of the constant input is required. This technique is illustrated on a diverse collection of low-dimensional numerical examples as well as data from a gas-turbine combustor.  more » « less
Award ID(s):
1634709
NSF-PAR ID:
10382861
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Control
ISSN:
0020-7179
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper considers system identification for systems whose output is asymptotically periodic under constant inputs. The model used for system identification is a discretetime Lur’e model consisting of asymptotically stable linear dynamics, a time delay, a washout filter, and a static nonlinear feedback mapping. For sufficiently large scaling of the loop transfer function, these components cause divergence under small signal levels and decay under large signal amplitudes, thus producing an asymptotically oscillatory output. A leastsquares technique is used to estimate the coefficients of the linear model as well as the parameters of a piecewise-linear approximation of the feedback mapping. 
    more » « less
  2. null (Ed.)
    A closed-loop control algorithm for the reduction of turbulent flow separation over NACA 0015 airfoil equipped with leading-edge synthetic jet actuators (SJAs) is presented. A system identification approach based on Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) technique was used to predict nonlinear dynamics of the fluid flow and for the design of the controller system. Numerical simulations based on URANS equations are performed at Reynolds number of 106 for various airfoil incidences with and without closed-loop control. The NARMAX model for flow over an airfoil is based on the static pressure data, and the synthetic jet actuator is developed using an incompressible flow model. The corresponding NARMAX identification model developed for the pressure data is nonlinear; therefore, the describing function technique is used to linearize the system within its frequency range. Low-pass filtering is used to obtain quasi-linear state values, which assist in the application of linear control techniques. The reference signal signifies the condition of a fully re-attached flow, and it is determined based on the linearization of the original signal during open-loop control. The controller design follows the standard proportional-integral (PI) technique for the single-input single-output system. The resulting closed-loop response tracks the reference value and leads to significant improvements in the transient response over the open-loop system. The NARMAX controller enhances the lift coefficient from 0.787 for the uncontrolled case to 1.315 for the controlled case with an increase of 67.1%. 
    more » « less
  3. The $\Ell_2$-gain characterizes a dynamical system's input-output properties, %and is used for important control methods, like $\mathcal{H}_{\infty}$ control. However, gain but can be difficult to determine for nonlinear systems. Previous work designed a nonconvex optimization problem to simultaneously search for a \ac{cpa} storage function and an upper bound on the small-signal $\Ell_2$-gain of a dynamical system over a triangulated region about the origin. This work improves upon those results by establishing a tighter upper-bound on a system's gain using a convex optimization problem. By reformulating the relationship between the Hamilton-Jacobi inequality and $\Ell_2$-gain as a \ac{lmi} and then developing novel \ac{lmi} error bounds for a triangulation, tighter gain bounds are derived and computed more efficiently. Additionally, a combined quadratic and \ac{cpa} storage function is considered to expand the nonlinear systems this optimization problem is applicable to. Numerical results demonstrate the tighter upper bound on a dynamical system's gain. 
    more » « less
  4. We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. Moreover, we apply contemporary statistical estimation techniques to certify the system’s safety through persistent constraint satisfaction with high probability. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods. 
    more » « less
  5. Abstract

    Model predictive control (MPC) for nonlinear systems involves a nonlinear dynamic optimization (NDO) step, which is required to be solved repeatedly. This step is computationally demanding, specially in dealing with constrained and/or nonlinear large‐scale systems. This paper presents a method for accelerating the NDO in state‐feedback regulation problems. Exploiting Carleman approximation, this method represents the nonlinear dynamics in a bilinear form and discretizes the resulting system in the time domain. The gradient and Hessian of the cost function with respect to the feedback gains are also analytically derived. The Carleman approximation of the nonlinear system may introduce errors in the prediction and sensitivity analysis. The manuscript derives a criterion under which the input‐to‐state stability of the new design is guaranteed. The proposed MPC is implemented in a chemical reactor example. Simulation results show that replacing conventional MPC schemes by the presented method reduces the computation time by an order of magnitude.

     
    more » « less