skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coexistence of vitreous and crystalline phases of H 2 O at ambient temperature
Formation of vitreous ice during rapid compression of water at room temperature is important for biology and the study of biological systems. Here, we show that Raman spectra of rapidly compressed water at greater than 1 GPa at room temperature exhibits the signature of high-density amorphous ice, whereas the X-ray diffraction (XRD) pattern is dominated by crystalline ice VI. To resolve this apparent contradiction, we used molecular dynamics simulations to calculate full vibrational spectra and diffraction patterns of mixtures of vitreous ice and ice VI, including embedded interfaces between the two phases. We show quantitatively that Raman spectra, which probe the local polarizability with respect to atomic displacements, are dominated by the vitreous phase, whereas a small amount of the crystalline component is readily apparent by XRD. The results of our combined experimental and theoretical studies have implications for detecting vitreous phases of water, survival of biological systems under extreme conditions, and biological imaging. The results provide additional insight into the stable and metastable phases of H 2 O as a function of pressure and temperature, as well as of other materials undergoing pressure-induced amorphization and other metastable transitions.  more » « less
Award ID(s):
2104881
PAR ID:
10382975
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
27
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Various metastable ice phases and their complicated transition pathways have been found by pressurization at low temperatures at which slow kinetics and high metastability are easily achieved. By contrast, such diversity is less expected at room or elevated temperatures. Here, using a combination of a dynamic diamond anvil cell and X-ray free electron laser techniques, we demonstrate that supercompressed water transforms into ice VI through multiple freezing–melting pathways at room temperature, hidden within the pressure region of ice VI. These multiple transition pathways occur via a metastable ice (more specifically, ice XXI with body-centred tetragonal structure ($$I\bar{4}2d$$ I 4 ¯ 2 d )) discovered in this study and a metastable ice VII that exists within the pressure range of ice VI. We find that supercompressed water structurally evolves from high-density water to very-high-density water, causing multiple transition pathways. These findings provide an insight to find more metastable ice phases and their transition pathways at elevated temperatures. 
    more » « less
  2. We report on the structural verification of metastable ice VII solidifying in the phase space of ice VI at 1.80 GPa at room temperature. Using time-resolved (TR) x-ray diffraction and TR ruby luminescence paired with high-speed microphotography utilizing a dynamic diamond anvil cell, an initial compression rate range from 0.12 to 95.84 GPa/s was explored. The solidification pressure of metastable ice VII has a potential sigmoidal dependence upon compression rate with a turnover compression rate of ∼80 GPa/s. The preferred crystallization of ice VII in the stability field of ice VI is due to the increased nucleation rate of ice VII over ice VI at 1.77 GPa that is driven by the surface energy difference between the liquid and solid phases along with the change in Gibbs free energy of solidification. The dynamic pressure-volume–compression behaviors of ice phases (VI and VII) show a lattice stiffening in both phases, especially during the compression loading. It is also found that the compression rate greatly affects the solid-solid phase transition between ice VI and VII but does not affect the liquid-solid transition between water and ice VI as much. Lastly, a third phase transition was found to occur after metastable ice VII transforms into high-density amorphous (HDA) ice, which could be a disordered hydrogen-bonded network configuration of ice VII forming out of HDA ice facilitated by the decoupling of the oxygen movement and reorientation of the H 2 O molecule. These results demonstrate the complexity of a seemingly simple molecule H 2 O , how it can readily change its static properties with the modification of (de)compression rate, and highlight the need to use multiple TR structural and spectroscopic probes at higher time resolutions to realize the most comprehensive understanding. 
    more » « less
  3. Abstract Perovskite photovoltaic ABX3systems are being studied due to their high energy‐conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single‐crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr3. Local structural analysis by pair distribution function and X‐ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures. The currently accepted space group assignments for CsPbBr3are found to be incorrect in a manner that profoundly impacts physical properties. New assignments are obtained for the bulk structure: (above ≈410 K),P21/m(between ≈300 K and ≈410 K), and the polar groupPm(below ≈300 K), respectively. The newly observed structural distortions exist in the bulk structure consistent with the expectation of previous photoluminescence and Raman measurements. High‐pressure measurements reveal multiple low‐pressure phases, one of which exists as a metastable phase at ambient pressure. This work should help guide research in the perovskite photovoltaic community to better control the structure under operational conditions and further improve transport and optical properties. 
    more » « less
  4. null (Ed.)
    Abstract. High-altitude cirrus clouds are climatically important: their formationfreeze-dries air ascending to the stratosphere to its final value, and theirradiative impact is disproportionately large. However, their formation andgrowth are not fully understood, and multiple in situ aircraft campaigns haveobserved frequent and persistent apparent water vapor supersaturations of5 %–25 % in ultracold cirrus (T<205 K), even in the presence of iceparticles. A variety of explanations for these observations have been putforth, including that ultracold cirrus are dominated by metastable ice whosevapor pressure exceeds that of hexagonal ice. The 2013 IsoCloud campaign atthe Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud andaerosol chamber allowed explicit testing of cirrus formation dynamics atthese low temperatures. A series of 28 experiments allows robust estimationof the saturation vapor pressure over ice for temperatures between 189 and235 K, with a variety of ice nucleating particles. Experiments are rapidenough (∼10 min) to allow detection of any metastable ice that mayform, as the timescale for annealing to hexagonal ice is hours or longer overthe whole experimental temperature range. We show that in all experiments,saturation vapor pressures are fully consistent with expected values forhexagonal ice and inconsistent with the highest values postulated formetastable ice, with no temperature-dependent deviations from expectedsaturation vapor pressure. If metastable ice forms in ultracold cirrusclouds, it appears to have a vapor pressure indistinguishable from that ofhexagonal ice to within about 4.5 %. 
    more » « less
  5. In this study, phase transitions (structural and magnetic) and associated magnetocaloric properties of stoichiometric MnCoGe have been investigated as a function of annealing pressure. Metastable phases were generated by annealing at 800 °C followed by rapid cooling under pressures up to 6.0 GPa. The x-ray diffraction results reveal that the crystal cell volume of the metastable phases continuously decreases with increasing thermal processing pressure, leading to a decrease in the structural transition temperature. The magnetic and structural transitions merge and form a first-order magnetostructural transition between the ferromagnetic orthorhombic and paramagnetic hexagonal phases over a broad temperature range (>80 K) spanning room temperature, yielding considerable magnetic entropy changes. These findings demonstrate the utility of thermal processing under high pressure, i.e., high-pressure annealing, to control the magnetostructural transitions and associated magnetocaloric properties of MnCoGe without altering its chemical composition. 
    more » « less