skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modulation of the Eastern Equatorial Pacific Seasonal Cycle by Tropical Instability Waves
Abstract Feedbacks from tropical instability waves (TIWs) on the seasonal cycle of the eastern Pacific Ocean are studied using two eddy‐rich ocean simulations, with and without TIWs. By warming the equatorial waters by up to 0.4°C through nonlinear advection in boreal summer and fall, TIWs reduce the amplitude of the seasonal cycle in upper ocean temperatures. In addition, TIWs stabilize the upper part of the Equatorial Undercurrent (EUC) through enhanced barotropic energy conversion, leading to a year‐round weakening by −0.15 m s−1and preventing an unrealistic re‐intensification in boreal fall usually found in non‐eddy resolving models. A coarser simulation at 1‐degree horizontal resolution fails to reproduce the TIW‐induced nonlinear warming of equatorial waters, but succeeds in inhibiting the EUC re‐intensification. This suggests a threshold effect in TIW strength, associated with the model's ability to simulate eddies, which may be responsible for long‐standing biases displayed by global climate models in this region.  more » « less
Award ID(s):
2141728 1813611
PAR ID:
10383164
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Although the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributor to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and the benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions. 
    more » « less
  2. Abstract Tropical instability waves (TIWs), the dominant form of eddy variability in the tropics, have a peak period at about 5 weeks and are strongly modulated by both the seasonal cycle and El Niño–Southern Oscillation (ENSO). In this study, we first demonstrated that TIW‐induced nonlinear dynamical heating (NDH) is basically proportional to the TIW amplitude depicted by a complex index for TIW. We further delineated that this NDH, capturing the seasonally modulated nonlinear feedback of TIW activity onto ENSO, is well approximated by a theoretical formulation derived analytically from a simple linear stochastic model for the TIW index. The results of this study may be useful for the climate community to evaluate and understand the TIW‐ENSO multiscale interaction. 
    more » « less
  3. Abstract Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases. 
    more » « less
  4. As the dominant form of mesoscale variability in the equatorial eastern Pacific, Tropical Instability Waves (TIWs) are known to interact with the El Niño and Southern Oscillation (ENSO) in complex ways. TIWs activity is modulated by the ENSO state and also provide significant feedback on ENSO via nonlinear dynamic heating (NDH), acting as a source of asymmetry between the El Niño and La Niña phases. In this work, we show that the interannual variability of TIWs-induced heat flux and NDH can be approximately expressed in terms of the mean meridional temperature gradient as TIWs tend to transport heat downgradient of the temperature anomalies along the Sea Surface Temperature (SST) front. The TIWs-induced NDH can be quantified as an asymmetric negative feedback on ENSO by a nonlinear thermal eddy diffusivity which depends on the background TIWs pattern and the ENSO-related linear and nonlinear processes. This proposed parameterization scheme can capture well the direct ENSO modulation on TIWs activity, the combination effect arising from the nonlinear interaction between ENSO and the cold tongue annual cycle, and associated ENSO nonlinearity. This parameterization scheme is effectively tested using four ocean reanalysis datasets with different horizontal resolutions that exhibit contrasted patterns of TIWs activity. This scheme may be useful for assessing the TIWs-induced feedback on ENSO in mechanistic ENSO models to better understand the dynamics of ENSO complexity. 
    more » « less
  5. Abstract Since the 1950s, observations and climate models show an amplification of sea surface temperature (SST) seasonal cycle in response to global warming over most of the global oceans except for the Southern Ocean (SO), however the cause remains poorly understood. In this study, we analyzed observations, ocean reanalysis, and a set of historical and abruptly quadrupled CO2simulations from the Coupled Model Intercomparison Project Phase 6 archive and found that the weakened SST seasonal cycle over the SO could be mainly attributed to the intensification of summertime westerly winds. Under the historical warming, the intensification of summertime westerly winds over the SO effectively deepens ocean mixed layer and damps surface warming, but this effect is considerably weaker in winter, thus weakening the SST seasonal cycle. This wind‐driven mechanism is further supported by our targeted coupled model experiments with the wind intensification effects being removed. 
    more » « less