skip to main content

Title: Delineating the Seasonally Modulated Nonlinear Feedback Onto ENSO From Tropical Instability Waves

Tropical instability waves (TIWs), the dominant form of eddy variability in the tropics, have a peak period at about 5 weeks and are strongly modulated by both the seasonal cycle and El Niño–Southern Oscillation (ENSO). In this study, we first demonstrated that TIW‐induced nonlinear dynamical heating (NDH) is basically proportional to the TIW amplitude depicted by a complex index for TIW. We further delineated that this NDH, capturing the seasonally modulated nonlinear feedback of TIW activity onto ENSO, is well approximated by a theoretical formulation derived analytically from a simple linear stochastic model for the TIW index. The results of this study may be useful for the climate community to evaluate and understand the TIW‐ENSO multiscale interaction.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Although the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributor to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and the benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions. 
    more » « less
  2. As the dominant form of mesoscale variability in the equatorial eastern Pacific, Tropical Instability Waves (TIWs) are known to interact with the El Niño and Southern Oscillation (ENSO) in complex ways. TIWs activity is modulated by the ENSO state and also provide significant feedback on ENSO via nonlinear dynamic heating (NDH), acting as a source of asymmetry between the El Niño and La Niña phases. In this work, we show that the interannual variability of TIWs-induced heat flux and NDH can be approximately expressed in terms of the mean meridional temperature gradient as TIWs tend to transport heat downgradient of the temperature anomalies along the Sea Surface Temperature (SST) front. The TIWs-induced NDH can be quantified as an asymmetric negative feedback on ENSO by a nonlinear thermal eddy diffusivity which depends on the background TIWs pattern and the ENSO-related linear and nonlinear processes. This proposed parameterization scheme can capture well the direct ENSO modulation on TIWs activity, the combination effect arising from the nonlinear interaction between ENSO and the cold tongue annual cycle, and associated ENSO nonlinearity. This parameterization scheme is effectively tested using four ocean reanalysis datasets with different horizontal resolutions that exhibit contrasted patterns of TIWs activity. This scheme may be useful for assessing the TIWs-induced feedback on ENSO in mechanistic ENSO models to better understand the dynamics of ENSO complexity. 
    more » « less
  3. null (Ed.)
    Abstract The El Niño-Southern Oscillation (ENSO) results from the instability of and also modulates the strength of the tropical-Pacific cold tongue. While climate models reproduce observed ENSO amplitude relatively well, the majority still simulates its asymmetry between warm (El Niño) and cold (La Niña) phases very poorly. The causes of this major deficiency and consequences thereof are so far not well understood. Analysing both reanalyses and climate models, we here show that simulated ENSO asymmetry is largely proportional to subsurface nonlinear dynamical heating (NDH) along the equatorial Pacific thermocline. Most climate models suffer from too-weak NDH and too-weak linear dynamical ocean-atmosphere coupling. Nevertheless, a sizeable subset (about 1/3) having relatively realistic NDH shows that El Niño-likeness of the equatorial-Pacific warming pattern is linearly related to ENSO amplitude change in response to greenhouse warming. Therefore, better simulating the dynamics of ENSO asymmetry potentially reduces uncertainty in future projections. 
    more » « less
  4. Abstract

    Three transient National Center for Atmospheric Research Community Climate System Model, version 3 model simulations were analyzed to study the responses of El Niño–Southern Oscillation (ENSO) and the equatorial Pacific annual cycle (AC) to external forcings over the last 300,000 years. The time‐varying boundary conditions of insolation, greenhouse gases, and continental ice sheets, accelerated by a factor of 100, were sequentially added in these simulations. The simulated ENSO and AC amplitudes change in phase, and both have pronounced precession band variance (~21,000 years). The precession‐modulated slow (orbital time scales) ENSO evolution is dominated linearly by the change of the coupled ocean‐atmosphere instability, notably the Ekman upwelling feedback and thermocline feedback. In contrast, the greenhouse gases and ice sheet forcings (~100,000‐year cycles) are opposed to each other as they influence ENSO variability through changes in AC amplitude via a common nonlinear frequency entrainment mechanism. The acceleration technique could dampen and delay the precession signals below the surface ocean associated with ENSO intensity.

    more » « less
  5. Abstract

    Equatorial Internal Wave Experiment observations at 0°, 140°W from October 2008 to February 2009 captured modulations of shear, stratification, and turbulence above the Equatorial Undercurrent by a series of tropical instability waves (TIWs). Analyzing these observations in terms of a four‐phase TIW cycle, we found that shear and stratification within the deep‐cycle layer being weakest in the middle of the N‐S phase (transition from northward to southward flow) and strongest in the late S phase (southward flow) and the early S‐N phase (transition from southward to northward flow). Turbulence was modulated but showed less dependence on the TIW cycle. The vertical diffusivity (KT) was largest during the N (northward flow) and N‐S phases, when stratification was weak, despite weak shear, and was smallest from the late S phase to the S‐N phase, when stratification was strong, despite strong shear. This tendency was less clear in turbulent heat flux because vertical temperature gradients were small at times whenKTwas large, and large whenKTwas small. We investigated the dynamics of shear and stratification variations within the TIW cycle by using an ocean general circulation model forced with observed winds. The model successfully reproduced the observed strong shear and stratification in the S phase, except for a small phase difference. The strong shear is explained by vortex stretching by TIWs. The strong stratification is explained by meridional and vertical advection.

    more » « less