skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relationships between Stellar Velocity Dispersion and the Atmospheres of Early-type Galaxies
Abstract The Voit et al. black hole feedback valve model predicts relationships between stellar velocity dispersion and atmospheric structure among massive early-type galaxies. In this work, we test that model using the Chandra archival sample of 49 early-type galaxies from Lakhchaura et al. We consider relationships between stellar velocity dispersion and entropy profile slope, multiphase gas extent, and the ratio of cooling time to freefall time. We also define subsamples based on data quality and entropy profile properties that clarify those relationships and enable more specific tests of the model predictions. We find that the atmospheric properties of early-type galaxies generally align with the predictions of the Voit et al. model, in that galaxies with a greater stellar velocity dispersion tend to have radial profiles of pressure, gas density, and entropy with steeper slopes and less extended multiphase gas. Quantitative agreement with the model predictions improves when the sample is restricted to have low central entropy and a stellar velocity dispersion of between 220 and 300 km s −1 .  more » « less
Award ID(s):
1714764
PAR ID:
10383311
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The neutral hydrogen (HI) in galaxies provides the gas reservoir out of which stars are formed. The ability to determine the HI masses for statistically significant samples of galaxies can provide information about the connection between this gas reservoir and the star formation that drives galaxy evolution. However, there are relatively few galaxies for which HI masses are known because these measurements are significantly more difficult to make than optical observations. Artificial neural networks are a type of nonlinear technique that have been used estimate the gas masses from their optical properties (Teimoorinia et al. 2017). We present HI observations of 51 galaxies with gas and stellar properties that are rare in the Arecibo Legacy Fast ALFA Survey (ALFALFA, Haynes et al. 2018) which was used to train the Artificial Neural Network developed by Teimoorinia et al. (ANN, 2017). These sources provide a test of the Artificial Neural Network predictions of HI mass and include some rare and interesting systems including galaxies that are extremely massive in both stellar mass (log M_∗> 11.0) and HI mass (log M_HI> 10.2) with large HI line widths (w_50> 500 km/s). We find that this Artificial Neural Network systematically overestimates the gas fraction of the galaxies in our selected sample, suggesting that care must be taken when using these techniques to predict gas masses for galaxies from a broad range of optical properties. 
    more » « less
  2. Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion. 
    more » « less
  3. null (Ed.)
    ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $$M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$$ and the circular velocity is $$V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturally cuspy profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for the dynamic rotation curves are found to be accurate to $$10\rm { per\, cent}$$ while SIDM are accurate to $$15\rm { per\, cent}$$. Unfortunately, this level of accuracy is not good enough to measure slopes at the level required to distinguish between cusps and cores of the type predicted in viable SIDM models without stronger priors. However, we find that this provides good enough accuracy to distinguish between the normalization differences predicted at small radii (r ≃ r−2 < rcore) for interesting SIDM models. As the number of galaxies with internal proper motions increases, mass estimators of this kind will enable valuable constraints on SIDM and CDM models. 
    more » « less
  4. null (Ed.)
    The Arecibo Pisces-Perseus Supercluster Survey (APPSS) aims to observationally measure the dark matter mass density of Pisces-Perseus by detecting the peculiar velocities of galaxies falling onto the supercluster. To do this, APPSS will measure galaxies' distances using the Baryonic Tully Fisher Relation (BTFR), which relates a galaxy's baryonic mass and rotational velocity. Recovering the signature of infall as robustly as possible requires a careful choice of rotational velocity measurement, as the use of various velocity definitions changes the scatter and systematics of the relation. We introduce and compare multiple automated methods for measuring a galaxy's rotational velocity using its unresolved line profile. The velocities discussed include global HI profile width measures commonly reported in large surveys, velocity widths derived from best-fit parametrizations to profiles, and velocity widths derived using more novel methods including the spectral line's curve of growth and neural network-derived velocities which incorporate information about the profile's width and shape. We compare these velocity measures by finding best-fit BTFR relations for two samples of galaxies - the SPARC sample and a selected sample of gas-dominated ALFALFA galaxies (Papastergis et al. 2016). With these best-fit BTFRs, we compare intrinsic scatters and residual correlations with source properties to investigate how velocity choice affects the absolute and systematic uncertainties of BTFR-derived galaxy distances. This research is supported by NSF/AST-1714828 and the Brinson Foundation. 
    more » « less
  5. null (Ed.)
    ABSTRACT Kinematic studies of disc galaxies, using individual stars in the Milky Way or statistical studies of global disc kinematics over time, provide insight into how discs form and evolve. We use a high-resolution, cosmological zoom-simulation of a Milky Way-mass disc galaxy (h277) to tie together local disc kinematics and the evolution of the disc over time. The present-day stellar age–velocity relationship (AVR) of h277 is nearly identical to that of the analogous solar-neighbourhood measurement in the Milky Way. A crucial element of this success is the simulation’s dynamically cold multiphase ISM, which allows young stars to form with a low velocity dispersion (σbirth$$\sim \!6 - 8 \ \mathrm{km\, s}^{-1}$$) at late times. Older stars are born kinematically hotter (i.e. the disc settles over time in an ‘upside-down’ formation scenario), and are subsequently heated after birth. The disc also grows ‘inside-out’, and many of the older stars in the present-day solar neighbourhood are present because of radial mixing. We demonstrate that the evolution of σbirth in h277 can be explained by the same model used to describe the general decrease in velocity dispersion observed in disc galaxies from z ∼ 2–3 to the present-day, in which the disc evolves in quasi-stable equilibrium and the ISM velocity dispersion decreases over time due to a decreasing gas fraction. Thus, our results tie together local observations of the Milky Way’s AVR with observed kinematics of high z disc galaxies. 
    more » « less