Abstract At coastal archaeological sites, measuring erosion rates and assessing artifact loss are vital to understanding the timescale(s) and spatial magnitude of past and future site loss. We describe a straightforward low-tech methodology for documenting shoreline erosion developed by professionals and volunteers over seven years at Calusa Island Midden (8LL45), one of the few remaining sites with an Archaic component in the Pine Island Sound region of coastal Southwest Florida. We outline the evolution of the methodology since its launch in 2016 and describe issues encountered and solutions implemented. We also describe the use of the data to guide archaeological research and document the impacts of major storms at the site. The response to Hurricane Ian in 2022 is one example of how simply collected data can inform site management. This methodology can be implemented easily at other coastal sites at low cost and in collaboration with communities, volunteers, and heritage site managers.
more »
« less
Erosion of coastal archaeological sites on Santa Rosa Island, California
The damage and loss of coastal archaeological sites from shoreline transgression and other near-coastal processes is common around the world. It negatively impacts our ability to address important research questions including those about the colonization of the New World, which likely occurred along the Pacific Coast. Differences in geomorphic context, annual weather patterns, topography, vegetation, bedrock, and land-use history lead to distinct localized patterns of erosion even within small geographic regions. We assessed near-coastal erosion on Santa Rosa Island, California, by monitoring annual change at 16 controlled points on 11 archaeological sites from 2013 to 2017 and by comparing it to the local geomorphic context and annual weather patterns. Overall, erosion through this period was greatest on the northwest coast of the island, which is directly in the path of prevailing winds and most winter storms, and least on the more protected west and south coasts. The 2016–2017 winter was the rainiest and had the most annual erosion in general; however, erosion at sites along gulley walls was lowest that year. By monitoring annual erosion and weather and associating them with variations in erosional processes, we can better understand threats to valuable cultural resources and take appropriate steps for mitigating their losses and the loss of archaeological data.
more »
« less
- Award ID(s):
- 1724639
- PAR ID:
- 10383324
- Date Published:
- Journal Name:
- Western North American naturalist
- Volume:
- 78
- Issue:
- 3
- ISSN:
- 1944-8341
- Page Range / eLocation ID:
- 302-327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Landward migration of coastal ecosystems in response to sea-level rise is altering coastal carbon dynamics. Although such landscapes rapidly accumulate soil carbon, barrier-island migration jeopardizes long-term storage through burial and exposure of organic-rich backbarrier deposits along the lower beach and shoreface. Here, we quantify the carbon flux associated with the seaside erosion of backbarrier lagoon and peat deposits along the Virginia Atlantic Coast. Barrier transgression leads to the release of approximately 26.1 Gg of organic carbon annually. Recent (1994–2017 C.E.) erosion rates exceed annual soil carbon accumulation rates (1984–2020) in adjacent backbarrier ecosystems by approximately 30%. Additionally, shoreface erosion of thick lagoon sediments accounts for >80% of total carbon losses, despite containing lower carbon densities than overlying salt marsh peat. Together, these results emphasize the impermanence of carbon stored in coastal environments and suggest that existing landscape-scale carbon budgets may overstate the magnitude of the coastal carbon sink.more » « less
-
Adnan, Mohammed_Sarfaraz Gani (Ed.)Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond.more » « less
-
Thoman, R.L.; Richter-Menge, J.; Druckenmiller, M.L. (Ed.)Since the early 2000s, observations from 14 coastal permafrost sites have been updated, providing a synopsis of how changes in the Arctic System are intensifying the dynamics of permafrost coasts in the 21st Century. Observations from all but 1 of the 14 permafrost coastal sites around the Arctic indicate that decadal-scale erosion rates are increasing. The US and Canadian Beaufort Sea coasts have experienced the largest increases in erosion rates since the early-2000s. The mean annual erosion rate in these regions has increased by 80 to 160 % at the five sites with available data, with sites in the Canadian Beaufort Sea experiencing the largest relative increase. The sole available site in the Greenland Sea, on southern Svalbard, indicates an increase in mean annual erosion rates by 66 % since 2000, due primarily to a reduction in nearshore sediment supply from glacial recession. At the five sites along the Barents, Kara, and Laptev Seas in Siberia, mean annual erosion rates increased between 33 and 97 % since the early to mid-2000s. The only site to experience a decrease in mean annual erosion (- 40%) was located in the Chukchi Sea in Alaska. Interestingly, the other site in the Chukchi Sea experienced one of the highest increases in mean annual erosion (+160%) over the same period. In general, a considerable increase in the variability of erosion and deposition intensity was also observed along most of the sites.more » « less
-
null (Ed.)Coastal storms are an important driver of geomorphic change along Great Lakes shorelines. While there is abundant anecdotal evidence for storm impacts in the region, only a handful of studies over the last few decades have quantified them and addressed system morphodynamics. Annual to seasonal lake-level fluctuations and declining winter-ice covers also influence coastal response to storms, yet relationships between hydrodynamics and geomorphology are poorly constrained. Given this, the Great Lakes region lags behind marine coasts in terms of predictive modeling of future coastal change, which is a necessary tool for proactive coastal management. To help close this gap, we conducted a year-long study at a sandy beach-dune system along the western shore of Lake Michigan, evaluating storm impacts under conditions of extremely high water level and absent shorefast ice. Drone-derived beach and dune topography data were used to link geomorphic changes to specific environmental conditions. High water levels throughout the year of study facilitated erosion during relatively minor wave events, enhancing the vulnerability of the system to a large storm in January 2020. This event occurred with no shorefast ice present and anomalously high winter water levels, resulting in widespread erosion and overwash. This resulted in 20% of the total accretion and 66% of the erosion documented at the site over the entire year. Our study highlights the importance of both antecedent and present conditions in determining Great Lakes shoreline vulnerability to storm impacts.more » « less
An official website of the United States government

