Abstract Barrier coastlines and their associated ecosystems are rapidly changing. Barrier islands/spits, marshes, bays, and coastal forests are all thought to be intricately coupled, yet an understanding of how morphologic change in one part of the system affects the system altogether remains limited. Here we explore how sediment exchange controls the migration of different ecosystem boundaries and ecosystem extent over time using a new coupled model framework that connects components of the entire barrier landscape, from the ocean shoreface to mainland forest. In our experiments, landward barrier migration is the primary cause of back‐barrier marsh loss, while periods of barrier stability can allow for recovery of back‐barrier marsh extent. Although sea‐level rise exerts a dominant control on the extent of most ecosystems, we unexpectedly find that, for undeveloped barriers, bay extent is largely insensitive to sea‐level rise because increased landward barrier migration (bay narrowing) offsets increased marsh edge erosion (bay widening).
more »
« less
Shoreface erosion counters blue carbon accumulation in transgressive barrier-island systems
Abstract Landward migration of coastal ecosystems in response to sea-level rise is altering coastal carbon dynamics. Although such landscapes rapidly accumulate soil carbon, barrier-island migration jeopardizes long-term storage through burial and exposure of organic-rich backbarrier deposits along the lower beach and shoreface. Here, we quantify the carbon flux associated with the seaside erosion of backbarrier lagoon and peat deposits along the Virginia Atlantic Coast. Barrier transgression leads to the release of approximately 26.1 Gg of organic carbon annually. Recent (1994–2017 C.E.) erosion rates exceed annual soil carbon accumulation rates (1984–2020) in adjacent backbarrier ecosystems by approximately 30%. Additionally, shoreface erosion of thick lagoon sediments accounts for >80% of total carbon losses, despite containing lower carbon densities than overlying salt marsh peat. Together, these results emphasize the impermanence of carbon stored in coastal environments and suggest that existing landscape-scale carbon budgets may overstate the magnitude of the coastal carbon sink.
more »
« less
- PAR ID:
- 10480796
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Barrier islands are low-lying coastal landforms vulnerable toinundation and erosion by sea level rise. Despite their socioeconomic andecological importance, their future morphodynamic response to sea level riseor other hazards is poorly understood. To tackle this knowledge gap, weoutline and describe the BarrieR Inlet Environment (BRIE) model that cansimulate long-term barrier morphodynamics. In addition to existing overwashand shoreface formulations, BRIE accounts for alongshore sediment transport,inlet dynamics, and flood–tidal delta deposition along barrier islands.Inlets within BRIE can open, close, migrate, merge with other inlets, andbuild flood–tidal delta deposits. Long-term simulations reveal complexemergent behavior of tidal inlets resulting from interactions with sea levelrise and overwash. BRIE also includes a stratigraphic module, whichdemonstrates that barrier dynamics under constant sea level rise rates canresult in stratigraphic profiles composed of inlet fill, flood–tidal delta,and overwash deposits. In general, the BRIE model represents a process-basedexploratory view of barrier island morphodynamics that can be used toinvestigate long-term risks of flooding and erosion in barrier environments.For example, BRIE can simulate barrier island drowning in cases in which theimposed sea level rise rate is faster than the morphodynamic response of thebarrier island.more » « less
-
Contradictory interpretations of upper Pleistocene (120–40 ka) sedimentary deposits along the US Mid-Atlantic Coast have hindered the development of a reliable regional sea-level curve for the last glacial cycle. This study presents new and compiled sediment cores, ground-penetrating radar, topographic data, aerial imagery, and limited geochronology from geologic units emplaced along the ocean-facing side of the Virginia Eastern Shore during mid- and late-Pleistocene periods of higher-than-present relative sea level: the Accomack Member (Omar Formation), the Butlers Bluff Member (Nassawadox Formation), the Joynes Neck Sand, and the Wachapreague Formation. Minor lithologic and morphologic updates are presented for the MIS 5e/5c Butlers Bluff Member, which is interpreted as a southward-prograding spit emplaced atop penecontemporaneous shoreface sediments or older transgressive sediments which fill the Exmore Paleochannel. The Joynes Neck Sand is reinterpreted as a coastal lag deposit, correlated with the Ironshire Formation in Maryland and Delaware, likely emplaced during MIS 5c. The Wachapreague Formation is determined to be a composite unit composed of two newly mapped members—the Locustville and Upshur Neck—which differ in lithology, internal architecture, and surficial morphology. The older and western Locustville Member (MIS 5a) is characterized by progradational beach and foredune ridges built atop transgressive shoreface and backbarrier deposits, and is correlated with the Sinepuxent Formation in Maryland and Delaware. The younger and eastern Upshur Neck Member of the Wachapreague Formation (late MIS 5a) is distinguished by surficial recurved ridges and preserved washover, dune, and channel-fill structures associated with spit growth atop shoreface deposits. These findings indicate that the Wachapreague Formation was constructed during two sequential highstands: an initial phase of sea-level rise and then fall allowed for deposition of the Locustville Member as a transgressive-highstand-regressive barrier system; and, following a period of lower-than-present sea level, a later highstand resulted in partial erosion of the easternmost Locustville and growth of the Upshur Neck Member. Finally, we update earlier descriptions of an aeolian sand sheet, likely deposited during MIS 3c, that discontinuously overlies most of the east-central Virginia Eastern Shore. Together, these findings update interpretations of the depositional history of the southern Delmarva Peninsula, and allow for future refinement of the sea-level history of the last interglacial-to-glacial period along the mid-field US Mid-Atlantic coast.more » « less
-
Abstract Ecosystem connectivity tends to increase the resilience and function of ecosystems responding to stressors. Coastal ecosystems sequester disproportionately large amounts of carbon, but rapid exchange of water, nutrients, and sediment makes them vulnerable to sea level rise and coastal erosion. Individual components of the coastal landscape (i.e., marsh, forest, bay) have contrasting responses to sea level rise, making it difficult to forecast the response of the integrated coastal carbon sink. Here we couple a spatially-explicit geomorphic model with a point-based carbon accumulation model, and show that landscape connectivity, in-situ carbon accumulation rates, and the size of the landscape-scale coastal carbon stock all peak at intermediate sea level rise rates despite divergent responses of individual components. Progressive loss of forest biomass under increasing sea level rise leads to a shift from a system dominated by forest biomass carbon towards one dominated by marsh soil carbon that is maintained by substantial recycling of organic carbon between marshes and bays. These results suggest that climate change strengthens connectivity between adjacent coastal ecosystems, but with tradeoffs that include a shift towards more labile carbon, smaller marsh and forest extents, and the accumulation of carbon in portions of the landscape more vulnerable to sea level rise and erosion.more » « less
-
Abstract Arctic coastal environments are eroding and rapidly changing. A lack of pan-Arctic observations limits our ability to understand controls on coastal erosion rates across the entire Arctic region. Here, we capitalize on an abundance of geospatial and remotely sensed data, in addition to model output, from the North Slope of Alaska to identify relationships between historical erosion rates and landscape characteristics to guide future modeling and observational efforts across the Arctic. Using existing datasets from the Alaska Beaufort Sea coast and a hierarchical clustering algorithm, we developed a set of 16 coastal typologies that captures the defining characteristics of environments susceptible to coastal erosion. Relationships between landscape characteristics and historical erosion rates show that no single variable alone is a good predictor of erosion rates. Variability in erosion rate decreases with increasing coastal elevation, but erosion rate magnitudes are highest for intermediate elevations. Areas along the Alaskan Beaufort Sea coast (ABSC) protected by barrier islands showed a three times lower erosion rate on average, suggesting that barrier islands are critical to maintaining mainland shore position. Finally, typologies with the highest erosion rates are not broadly representative of the ABSC and are generally associated with low elevation, north- to northeast-facing shorelines, a peaty pebbly silty lithology, and glaciomarine deposits with high ice content. All else being equal, warmer permafrost is also associated with higher erosion rates, suggesting that warming permafrost temperatures may contribute to higher future erosion rates on permafrost coasts. The suite of typologies can be used to guide future modeling and observational efforts by quantifying the distribution of coastlines with specific landscape characteristics and erosion rates.more » « less
An official website of the United States government
