skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flow around topological defects in active nematic films
We study the active flow around isolated defects and the self-propulsion velocity of + 1 / 2 defects in an active nematic film with both viscous dissipation (with viscosity η ) and frictional damping Γ with a substrate. The interplay between these two dissipation mechanisms is controlled by the hydrodynamic dissipation length ℓ d = η / Γ that screens the flows. For an isolated defect, in the absence of screening from other defects, the size of the shear vorticity around the defect is controlled by the system size R . In the presence of friction that leads to a finite value of ℓ d , the vorticity field decays to zero on the lengthscales larger than ℓ d . We show that the self-propulsion velocity of + 1 / 2 defects grows with R in small systems where R < ℓ d , while in the infinite system limit or when R ≫ ℓ d , it approaches a constant value determined by ℓ d .  more » « less
Award ID(s):
2041459
PAR ID:
10383426
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
478
Issue:
2257
ISSN:
1364-5021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the dynamics of topological defects in active nematic films with spatially varying activity and consider two set-ups: (i) a constant activity gradient and (ii) a sharp jump in activity. A constant gradient of extensile (contractile) activity endows the comet-like +1/2 defect with a finite vorticity that drives the defect to align its nose in the direction of decreasing (increasing) gradient. A constant gradient does not, however, affect the known self-propulsion of the +1/2 defect and has no effect on the −1/2 that remains a non-motile particle. A sharp jump in activity acts like a wall that traps the defects, affecting the translational and rotational motion of both charges. The +1/2 defect slows down as it approaches the interface and the net vorticity tends to reorient the defect polarization so that it becomes perpendicular to the interface. The −1/2 defect acquires a self-propulsion towards the activity interface, while the vorticity-induced active torque tends to align the defect to a preferred orientation. This effective attraction of the negative defects to the wall is consistent with the observation of an accumulation of negative topological charge at both active/passive interfaces and physical boundaries. 
    more » « less
  2. Abstract We adapt the Halperin–Mazenko formalism to analyze two-dimensional active nematics coupled to a generic fluid flow. The governing hydrodynamic equations lead to evolution laws for nematic topological defects and their corresponding density fields. We find that ±1/2 defects are propelled by the local fluid flow and by the nematic orientation coupled with the flow shear rate. In the overdamped and compressible limit, we recover the previously obtained active self-propulsion of the +1/2 defects. Non-local hydrodynamic effects are primarily significant for incompressible flows, for which it is not possible to eliminate the fluid velocity in favor of the local defect polarization alone. For the case of two defects with opposite charge, the non-local hydrodynamic interaction is mediated by non-reciprocal pressure-gradient forces. Finally, we derive continuum equations for a defect gas coupled to an arbitrary (compressible or incompressible) fluid flow. 
    more » « less
  3. A<sc>bstract</sc> Diboson production in association with jets is studied in the fully leptonic final states, pp → (Z/γ*)(Z/γ*) + jets → 2ℓ2ℓ′ + jets, (ℓ,ℓ′ = e orμ) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb−1collected with the CMS detector at the LHC. Differential distributions and normalized differential cross sections are measured as a function of jet multiplicity, transverse momentumpT, pseudorapidityη, invariant mass and ∆ηof the highest-pTand second-highest-pTjets, and as a function of invariant mass of the four-lepton system for events with various jet multiplicities. These differential cross sections are compared with theoretical predictions that mostly agree with the experimental data. However, in a few regions we observe discrepancies between the predicted and measured values. Further improvement of the predictions is required to describe the ZZ+jets production in the whole phase space. 
    more » « less
  4. Cyanide, as an ambidentate ligand, plays a pivotal role in providing a simple diatomic building-block motif for controlled metal aggregation (M–CN–M′). Specifically, the inherent hard–soft nature of the cyanide ligand, i.e. , hard-nitrogen and soft-carbon centers, is due to electronic handles for binding Lewis acids following the hard–soft acid–base principle. Studies by Holm and Karlin showed structural and electronic requirements for cyanide-bridged (por)Fe III –CN–Cu II/I (por = porphyrin) molecular assemblies as biomimetics for cyanide-inhibited terminal quinol oxidases and cytochrome-C oxidase. The dinitrosyliron unit (DNIU) that exists in two redox states, {Fe(NO) 2 } 9 and {Fe(NO) 2 } 10 , draws attention as an electronic analogy of Cu II and Cu I , d 9 and d 10 , respectively. In similar controlled aggregations, L-type [(η 5 -C 5 R 5 )Fe(dppe)(CN)] (dppe = diphenyl phosphinoethane; R = H and Me) have been used as N-donor, μ-cyanoiron metalloligands to stabilize the DNIU in two redox states. Two bimetallic [(η 5 -C 5 R 5 )(dppe)Fe II –CN–{Fe(NO) 2 } 9 (sIMes)][BF 4 ] complexes, Fe-1 (R = H) and Fe*-1 (R = CH 3 ), showed dissimilar Fe II CN–{Fe(NO) 2 } 9 angular bends due to the electronic donor properties of the [(η 5 -C 5 R 5 )Fe(dppe)(CN)] μ-cyanoiron metalloligand. A trimetallic [(η 5 -C 5 Me 5 )(dppe)Fe II –CN] 2 –{Fe(NO) 2 } 10 complex, Fe*-2 , engaged two bridging μ-cyanoiron metalloligands to stabilize the {Fe(NO) 2 } 10 unit. The lability of the Fe II –CN–{Fe(NO) 2 } 9/10 bond was probed by suitable X-type (Na + SPh − ) and L-type (PMe 3 ) ligands. Treatment of Fe-1 and Fe*-1 with PMe 3 accounted for a reduction-induced substitution at the DNIU, releasing [(η 5 -C 5 R 5 )Fe(dppe)(CN)] and N-heterocyclic carbene, and generating (PMe 3 ) 2 Fe(NO) 2 as the reduced {Fe(NO) 2 } 10 product. 
    more » « less
  5. Abstract The persistent dynamics in systems out of equilibrium, particularly those characterized by annihilation and creation of topological defects, is known to involve complicated spatiotemporal processes and is deemed difficult to control. Here the complex dynamics of defects in active smectic layers exposed to strong confinements is explored, through self-propulsion of active particles and a variety of confining geometries with different topology, ranging from circular, flower-shaped epicycloid, to hypocycloid cavities, channels, and rings. We identify a wealth of dynamical behaviors during the evolution of complex spatiotemporal defect patterns as induced by the confining shape and topology, particularly a perpetual creation-annihilation dynamical state at intermediate activity with large fluctuations of topological defects and a controllable transition from oscillatory to damped time correlation of defect number density via mechanisms governed by boundary cusps. Our results are obtained by using an active phase field crystal approach. Possible experimental realizations are also discussed. 
    more » « less