skip to main content


Title: Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning
Abstract

Understanding and controlling the self-assembly of vertically oriented carbon nanotube (CNT) forests is essential for realizing their potential in myriad applications. The governing process–structure–property mechanisms are poorly understood, and the processing parameter space is far too vast to exhaustively explore experimentally. We overcome these limitations by using a physics-based simulation as a high-throughput virtual laboratory and image-based machine learning to relate CNT forest synthesis attributes to their mechanical performance. Using CNTNet, our image-based deep learning classifier module trained with synthetic imagery, combinations of CNT diameter, density, and population growth rate classes were labeled with an accuracy of >91%. The CNTNet regression module predicted CNT forest stiffness and buckling load properties with a lower root-mean-square error than that of a regression predictor based on CNT physical parameters. These results demonstrate that image-based machine learning trained using only simulated imagery can distinguish subtle CNT forest morphological features to predict physical material properties with high accuracy. CNTNet paves the way to incorporate scanning electron microscope imagery for high-throughput material discovery.

 
more » « less
Award ID(s):
2026847
NSF-PAR ID:
10383552
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
7
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The parameter space of CNT forest synthesis is vast and multidimensional, making experimental and/or numerical exploration of the synthesis prohibitive. We propose a more practical approach to explore the synthesis-process relationships of CNT forests using machine learning (ML) algorithms to infer the underlying complex physical processes. Currently, no such ML model linking CNT forest morphology to synthesis parameters has been demonstrated. In the current work, we use a physics-based numerical model to generate CNT forest morphology images with known synthesis parameters to train such a ML algorithm. The CNT forest synthesis variables of CNT diameter and CNT number densities are varied to generate a total of 12 distinct CNT forest classes. Images of the resultant CNT forests at different time steps during the growth and self-assembly process are then used as the training dataset. Based on the CNT forest structural morphology, multiple single and combined histogram-based texture descriptors are used as features to build a random forest (RF) classifier to predict class labels based on correlation of CNT forest physical attributes with the growth parameters. The machine learning model achieved an accuracy of up to 83.5% on predicting the synthesis conditions of CNT number density and diameter. These results are the first step towards rapidly characterizing CNT forest attributes using machine learning. Identifying the relevant process-structure interactions for the CNT forests using physics-based simulations and machine learning could rapidly advance the design, development, and adoption of CNT forest applications with varied morphologies and properties 
    more » « less
  2. Abstract

    After graphene was first exfoliated in 2004, research worldwide has focused on discovering and exploiting its distinctive electronic, mechanical, and structural properties. Application of the efficacious methodology used to fabricate graphene, mechanical exfoliation followed by optical microscopy inspection, to other analogous bulk materials has resulted in many more two-dimensional (2D) atomic crystals. Despite their fascinating physical properties, manual identification of 2D atomic crystals has the clear drawback of low-throughput and hence is impractical for any scale-up applications of 2D samples. To combat this, recent integration of high-performance machine-learning techniques, usually deep learning algorithms because of their impressive object recognition abilities, with optical microscopy have been used to accelerate and automate this traditional flake identification process. However, deep learning methods require immense datasets and rely on uninterpretable and complicated algorithms for predictions. Conversely, tree-based machine-learning algorithms represent highly transparent and accessible models. We investigate these tree-based algorithms, with features that mimic color contrast, for automating the manual inspection process of exfoliated 2D materials (e.g., MoSe2). We examine their performance in comparison to ResNet, a famous Convolutional Neural Network (CNN), in terms of accuracy and the physical nature of their decision-making process. We find that the decision trees, gradient boosted decision trees, and random forests utilize physical aspects of the images to successfully identify 2D atomic crystals without suffering from extreme overfitting and high training dataset demands. We also employ a post-hoc study that identifies the sub-regions CNNs rely on for classification and find that they regularly utilize physically insignificant image attributes when correctly identifying thin materials.

     
    more » « less
  3. Carbon nanotube (CNT) forests are imaged using scanning electron microscopes (SEMs) that project their multilayered 3D structure into a single 2D image. Image analytics, particularly instance segmentation is needed to quantify structural characteristics and to predict correlations between structural morphology and physical properties. The inherent complexity of individual CNT structures is further increased in CNT forests due to density of CNTs, interactions between CNTs, occlusions, and lack of 3D information to resolve correspondences when multiple CNTs from different depths appear to cross in 2D. In this paper, we propose CNT-NeRF, a generative adversarial network (GAN) for simultaneous depth layer decomposition and segmentation of CNT forests in SEM images. The proposed network is trained using a multi-layer, photo-realistic synthetic dataset obtained by transferring the style of real CNT images to physics-based simulation data. Experiments show promising depth layer decomposition and accurate CNT segmentation results not only for the front layer but also for the partially occluded middle and back layers. This achievement is a significant step towards automated, image-based CNT forest structure characterization and physical property prediction. 
    more » « less
  4. While the physical properties of carbon nanotubes (CNTs) are often superior to conventional engineering materials, their widespread adoption into many applications is limited by scaling the properties of individual CNTs to macroscale CNT assemblies known as CNT forests. The self-assembly mechanics of CNT forests that determine their morphology and ensemble properties remain poorly understood. Few experimental techniques exist to characterize and observe the growth and self-assembly processes in situ. Here we introduce the use of in-situ scanning electron microscope (SEM) synthesis based on chemical vapor deposition (CVD) processing. In this preliminary report, we share best practices for in-situ SEM CVD processing and initial CNT forest synthesis results. Image analysis techniques are developed to identify and track the movement of catalyst nanoparticles during synthesis conditions. Finally, a perspective is provided in which in-situ SEM observations represent one component of a larger system in which numerical simulation, machine learning, and digital control of experiments reduces the role of humans and human error in the exploration of CNT forest process-structure-property relationships. 
    more » « less
  5. Abstract

    Herein, we implement and access machine learning architectures to ascertain models that differentiate healthy from apoptotic cells using exclusively forward (FSC) and side (SSC) scatter flow cytometry information. To generate training data, colorectal cancer HCT116 cells were subjected to miR-34a treatment and then classified using a conventional Annexin V/propidium iodide (PI)-staining assay. The apoptotic cells were defined as Annexin V-positive cells, which include early and late apoptotic cells, necrotic cells, as well as other dying or dead cells. In addition to fluorescent signal, we collected cell size and granularity information from the FSC and SSC parameters. Both parameters are subdivided into area, height, and width, thus providing a total of six numerical features that informed and trained our models. A collection of logistical regression, random forest, k-nearest neighbor, multilayer perceptron, and support vector machine was trained and tested for classification performance in predicting cell states using only the six aforementioned numerical features. Out of 1046 candidate models, a multilayer perceptron was chosen with 0.91 live precision, 0.93 live recall, 0.92 livefvalue and 0.97 live area under the ROC curve when applied on standardized data. We discuss and highlight differences in classifier performance and compare the results to the standard practice of forward and side scatter gating, typically performed to select cells based on size and/or complexity. We demonstrate that our model, a ready-to-use module for any flow cytometry-based analysis, can provide automated, reliable, and stain-free classification of healthy and apoptotic cells using exclusively size and granularity information.

     
    more » « less