skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rates of Future Climate Change in the Gulf of Mexico and the Caribbean Sea: Implications for Coral Reef Ecosystems
Abstract Rising temperatures and ocean acidification due to anthropogenic climate change pose ominous threats to coral reef ecosystems in the Gulf of Mexico (GoM) and the western Caribbean Sea. Unfortunately, the once structurally complex coral reefs in the GoM and Caribbean have dramatically declined since the 1970s; relatively few coral reefs still exhibit a mean live coral cover of >10%. Additional work is needed to characterize future climate stressors on coral reefs in the GoM and the Caribbean Sea. Here, we use climate model simulations spanning the period of 2015–2100 to partition and assess the individual impacts of climate stressors on corals in the GoM and the western Caribbean Sea. We use a top‐down modeling framework to diagnose future projected changes in thermal stress and ocean acidification and discuss its implications for coral reef ecosystems. We find that ocean temperatures increase by 2°C–3°C over the 21st century, and surpass reported regional bleaching thresholds by mid‐century. Whereas ocean acidification occurs, the rate and magnitude of temperature changes outpace and outweigh the impacts of changes in aragonite saturation state. A framework for quantifying and communicating future risks in the GoM and Caribbean using reef risk projection maps is discussed. Without substantial mitigation efforts, the combined impact of increasing ocean temperatures and acidification are likely to stress most existing corals in the GoM and the Caribbean, with widespread economic and ecological consequences.  more » « less
Award ID(s):
2109622 2102931
PAR ID:
10383673
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
127
Issue:
9
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Storto, Andrea (Ed.)
    The world’s oceans are warming at an unprecedented rate, causing dramatic changes to coastal marine systems, especially coral reefs. We used three complementary ocean temperature databases (HadISST, Pathfinder, and OISST) to quantify change in thermal characteristics of Caribbean coral reefs over the last 150 years (1871–2020). These sea surface temperature (SST) databases included in situ and satellite-derived measurements at multiple spatial resolutions. We also compiled a Caribbean coral reef database identifying 5,326 unique reefs across the region. We found that Caribbean reefs have been warming for at least a century. Regionally reef warming began in 1915, and for four of the eight Caribbean ecoregions we assessed, significant warming was detected for the latter half of the nineteenth century. Following the global mid-twentieth century stasis, warming resumed on Caribbean reefs in the early 1980s in some ecoregions and in the 1990s for others. On average, Caribbean reefs warmed by 0.18°C per decade during this period, ranging from 0.17°C per decade on Bahamian reefs (since 1988) to 0.26°C per decade on reefs within the Southern and Eastern Caribbean ecoregions (since 1981 and 1984, respectively). If this linear rate of warming continues, these already threatened ecosystems would warm by an additional ~1.5°C on average by 2100. We also found that marine heatwave (MHW) events are increasing in both frequency and duration across the Caribbean. Caribbean coral reefs now experience on average 5 MHW events annually, compared to 1 per year in the early 1980s, with recent events lasting on average 14 days. These changes in the thermal environment, in addition to other stressors including fishing and pollution, have caused a dramatic shift in the composition and functioning of Caribbean coral reef ecosystems. 
    more » « less
  2. Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO 2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO 2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO 2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO 2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO 2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO 2 variability may promote more acidification-resilient coral populations in a changing climate. 
    more » « less
  3. Abstract An understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay–Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters. To illustrate an approach for incorporating CC into ecological risk assessment frameworks, we developed an adverse outcome pathway network to conceptually delineate the effects of climate variables and photosystem II herbicide (diuron) exposures on scleractinian corals. This informed the development of a Bayesian network (BN) to quantitatively compare the effects of historical (1975–2005) and future projected climate on inshore hard coral bleaching, mortality, and cover. This BN demonstrated how risk may be predicted for multiple physical and biological stressors, including temperature, ocean acidification, cyclones, sediments, macroalgae competition, and crown of thorns starfish predation, as well as chemical stressors such as nitrogen and herbicides. Climate scenarios included an ensemble of 16 downscaled models encompassing current and future conditions based on multiple emission scenarios for two 30‐year periods. It was found that both climate‐related and catchment‐related stressors pose a risk to these inshore reef systems, with projected increases in coral bleaching and coral mortality under all future climate scenarios. This modeling exercise can support the identification of risk drivers for the prioritization of management interventions to build future resilient reefs.Integr Environ Assess Manag2024;20:401–418. © 2023 Norwegian Institute for Water Research and The Authors.Integrated Environmental Assessment and Managementpublished by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 
    more » « less
  4. Marine heatwaves are triggering coral bleaching events and devastating coral populations globally, highlighting the need to identify processes promoting coral survival. Here, we show that acceleration of a major ocean current and shallowing of the surface mixed layer enhanced localized upwelling on a central Pacific coral reef during the three strongest El Niño–associated marine heatwaves of the past half century. These conditions mitigated regional declines in primary production and bolstered local supply of nutritional resources to corals during a bleaching event. The reefs subsequently suffered limited post-bleaching coral mortality. Our results reveal how large-scale ocean-climate interactions affect reef ecosystems thousands of kilometers away and provide a valuable framework for identifying reefs that may benefit from such biophysical linkages during future bleaching events. 
    more » « less
  5. Abstract Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) andCO2partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data andIPCC AR5 ensemble climate model data. Three of the four most abundant species,Orbicella faveolata, Montastraea cavernosa,andPorites astreoides, had negative calcification responses to both elevated temperature andpCO2. In the business‐as‐usualCO2emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates.Siderastrea siderea, the other most common species, was insensitive to both temperature andpCO2within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reducedCO2emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species likeS. sidereaare not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reducedCO2emissions can limit future declines in reef calcification. 
    more » « less