skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trans-Neptunian binaries (2018)
The discovery and characteristics of transneptunian binaries are reviewed. In the 20 years since their first discovery, a wealth of detail has emerged including the frequency of binaries in different populations, their relative sizes and separations, and colors. Taken globally, these properties give strong clues to the origin and evolution of the populations where these binaries are found. In the last 10 years, an increasing number of binary orbits have been determined which yields a new trove of information on their masses and densities as well as details of their orbits including inclination, eccentricity and the timing of mutual events. In 2018, the study of transneptunian binaries remains one of the most active areas of progress in understanding the solar system beyond Neptune.  more » « less
Award ID(s):
1734484
PAR ID:
10383806
Author(s) / Creator(s):
; ; ;
Editor(s):
The Trans-Neptunian Solar System, Edited by
Date Published:
Journal Name:
Elsevier
ISSN:
0922-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($$M\gtrsim 1.2\ {\rm M}_{\odot}$$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars. 
    more » « less
  2. Abstract Astrometry from Gaia DR3 has enabled the discovery of a sample of 3000+ binaries containing white dwarfs (WD) and main-sequence (MS) stars in relatively wide orbits, with orbital periodsPorb= (100–1000) days. This population was not predicted by binary population synthesis models before Gaia and—if the Gaia orbits are robust—likely requires very efficient envelope ejection during common envelope evolution (CEE). To assess the reliability of the Gaia solutions, we measured multi-epoch radial velocities (RVs) of 31 WD+MS binary candidates withPorb= (40–300) days andAstroSpectroSB1orbital solutions. We jointly fit the RVs and astrometry, allowing us to validate the Gaia solutions and tighten constraints on component masses. We find a high success rate for the Gaia solutions, with only 2 out of the 31 systems showing significant discrepancies between their Gaia orbital solutions and our RVs. Joint fitting of RVs and astrometry allows us to directly constrain the secondary-to-primary flux ratio S , and we find S 0.02 for most objects, confirming the companions are indeed WDs. We tighten constraints on the binaries’ eccentricities, finding a mediane≈ 0.1. These eccentricities are much lower than those of normal MS+MS binaries at similar periods, but much higher than predicted for binaries formed via stable mass transfer. We present MESA single and binary evolution models to explore how the binaries may have formed. The orbits of most binaries in the sample can be produced through CEE that begins when the WD progenitor is an AGB star, corresponding to initial separations of 2–5 au. Roughly 50% of all post-common envelope binaries are predicted to have first interacted on the AGB, ending up in wide orbits like these systems. 
    more » « less
  3. We determine the ability of Cosmic Explorer, a proposed third-generation gravitational-wave observatory, to detect eccentric binary neutron stars and to measure their eccentricity. We find that for a matched-filter search, template banks constructed using binaries in quasicircular orbits are effectual for eccentric neutron star binaries with e<0.004 (e<0.003)is the binary’s eccentricity at a gravitational-wave frequency of 7 Hz. We show that stochastic template placement can be used to construct a matched-filter search for binaries with larger eccentricities and construct an effectual template bank for binaries with e<0.05. We show that the computational cost of both the search for binaries in quasicircular orbits and eccentric orbits is not significantly larger for Cosmic Explorer than for Advanced LIGO and is accessible with present-day computational resources. We investigate Cosmic Explorer’s ability to distinguish between circular and eccentric binaries. We estimate that for a binary with a signal-to-noise ratio of 20 (800), Cosmic Explorer can distinguish between a circular binary and a binary with eccentricity e>~1e-2 (1e-3) at 90% confidence. 
    more » « less
  4. ABSTRACT Having a massive moon has been considered as a primary mechanism for stabilized planetary obliquity, an example of which being our Earth. This is, however, not always consistent with the exoplanetary cases. This article details the discovery of an alternative mechanism, namely that planets orbiting around binary stars tend to have low spin-axis variations. This is because the large quadrupole potential of the stellar binary could speed up the planetary orbital precession, and detune the system out of secular spin-orbit resonances. Consequently, habitable zone planets around the stellar binaries in low inclination orbits hold higher potential for regular seasonal changes comparing to their single star analogues. 
    more » « less
  5. Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara , a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment. 
    more » « less