skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal dynamics of a diffusive predator–prey model with fear effect
This paper concerned with a diffusive predator–prey model with fear effect. First, some basic dynamics of system is analyzed. Then based on stability analysis, we derive some conditions for stability and bifurcation of constant steady state. Furthermore, we derive some results on the existence and nonexistence of nonconstant steady states of this model by considering the effect of diffusion. Finally, we present some numerical simulations to verify our theoretical results. By mathematical and numerical analyses, we find that the fear can prevent the occurrence of limit cycle oscillation and increase the stability of the system, and the diffusion can also induce the chaos in the system.  more » « less
Award ID(s):
2052820
PAR ID:
10383921
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nonlinear Analysis: Modelling and Control
Volume:
27
ISSN:
1392-5113
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fear of predation may assert privilege to prey species by restricting their exposure to potential predators, meanwhile it can also impose costs by constraining the exploration of optimal resources. A predator–prey model with the effect of fear, refuge, and hunting cooperation has been investigated in this paper. The system’s equilibria are obtained and their local stability behavior is discussed. The existence of Hopf-bifurcation is analytically shown by taking refuge as a bifurcation parameter. There are many ecological factors which are not instantaneous processes, and so, to make the system more realistic, we incorporate three discrete time delays: in the effect of fear, refuge and hunting cooperation, and analyze the delayed system for stability and bifurcation. Moreover, for environmental fluctuations, we further modify the delayed system by incorporating seasonality in the fear, refuge and cooperation. We have analyzed the seasonally forced delayed system for the existence of a positive periodic solution. In the support of analytical results, some numerical simulations are carried out. Sensitivity analysis is used to identify parameters having crucial impacts on the ecological balance of predator–prey interactions. We find that the rate of predation, fear, and hunting cooperation destabilizes the system, whereas prey refuge stabilizes the system. Time delay in the cooperation behavior generates irregular oscillations whereas delay in refuge stabilizes an otherwise unstable system. Seasonal variations in the level of fear and refuge generate higher periodic solutions and bursting patterns, respectively, which can be replaced by simple 1-periodic solution if the cooperation and fear are also allowed to vary with time in the former and latter situations. Higher periodicity and bursting patterns are also observed due to synergistic effects of delay and seasonality. Our results indicate that the combined effects of fear, refuge and hunting cooperation play a major role in maintaining a healthy ecological environment. 
    more » « less
  2. In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a(8,0)-mode Turing–Hopf bifurcationand unstable for a(3,0)-mode Turing–Hopf bifurcation. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a(0,1)-mode double-Hopf bifurcation. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results. 
    more » « less
  3. The vertical transport of solid material in a stratified medium is fundamental to a number of environmental applications, with implications for the carbon cycle and nutrient transport in marine ecosystems. In this work, we study the diffusion-limited settling of highly porous particles in a density-stratified fluid through a combination of experiment, analysis, and numerical simulation. By delineating and appealing to the diffusion-limited regime wherein buoyancy effects due to mass adaptation dominate hydrodynamic drag, we derive a simple expression for the steady settling velocity of a sphere as a function of the density, size, and diffusivity of the solid, as well as the density gradient of the background fluid. In this regime, smaller particles settle faster, in contrast with most conventional hydrodynamic drag mechanisms. Furthermore, we outline a general mathematical framework for computing the steady settling speed of a body of arbitrary shape in this regime and compute exact results for the case of general ellipsoids. Using hydrogels as a highly porous model system, we validate the predictions with laboratory experiments in linear stratification for a wide range of parameters. Last, we show how the predictions can be applied to arbitrary slowly varying background density profiles and demonstrate how a measured particle position over time can be used to reconstruct the background density profile. 
    more » « less
  4. Achieving optimal steady-state performance in real-time is an increasingly necessary requirement of many critical infrastructure systems. In pursuit of this goal, this paper builds a systematic design framework of feedback controllers for Linear Time-Invariant (LTI) systems that continuously track the optimal solution of some predefined optimization problem. We logically divide the proposed solution into three components. The first component estimates the system state from the output measurements. The second component uses the estimated state and computes a drift direction based on an optimization algorithm. The third component calculates an input to the LTI system that aims to drive the system toward the optimal steady-state. We analyze the equilibrium characteristics of the closed-loop system and provide conditions for optimality and stability. Our analysis shows that the proposed solution guarantees optimal steady-state performance, even in the presence of constant disturbances. Furthermore, by leveraging recent results on the analysis of optimization algorithms using Integral Quadratic Constraints (IQCs), the proposed framework can translate input-output properties of our optimization component into sufficient conditions, based on linear matrix inequalities (LMIs), for global exponential asymptotic stability of the closed-loop system. We illustrate several resulting controller designs using a numerical example. 
    more » « less
  5. We introduce a two-strain model with asymmetric temporary immunity periods and partial cross-immunity. We derive explicit conditions for competitive exclusion and coexistence of the strains depending on the strain-specific basic reproduction numbers, temporary immunity periods, and degree of cross-immunity. The results of our bifurcation analysis suggest that, even when two strains share similar basic reproduction numbers and other epidemiological parameters, a disparity in temporary immunity periods and partial or complete cross-immunity can provide a significant competitive advantage. To analyze the dynamics, we introduce a quasi-steady state reduced model which assumes the original strain remains at its endemic steady state. We completely analyze the resulting reduced planar hybrid switching system using linear stability analysis, planar phase-plane analysis, and the Bendixson-Dulac criterion. We validate both the full and reduced models with COVID-19 incidence data, focusing on the Delta (B.1.617.2), Omicron (B.1.1.529), and Kraken (XBB.1.5) variants. These numerical studies suggest that, while early novel strains of COVID-19 had a tendency toward dramatic takeovers and extinction of ancestral strains, more recent strains have the capacity for co-existence. 
    more » « less