skip to main content


Title: Integrating Ecological Forecasting into Undergraduate Ecology Curricula with an R Shiny Application-Based Teaching Module
Ecological forecasting is an emerging approach to estimate the future state of an ecological system with uncertainty, allowing society to better manage ecosystem services. Ecological forecasting is a core mission of the U.S. National Ecological Observatory Network (NEON) and several federal agencies, yet, to date, forecasting training has focused on graduate students, representing a gap in undergraduate ecology curricula. In response, we developed a teaching module for the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program to introduce ecological forecasting to undergraduate students through an interactive online tool built with R Shiny. To date, we have assessed this module, “Introduction to Ecological Forecasting,” at ten universities and two conference workshops with both undergraduate and graduate students (N = 136 total) and found that the module significantly increased undergraduate students’ ability to correctly define ecological forecasting terms and identify steps in the ecological forecasting cycle. Undergraduate and graduate students who completed the module showed increased familiarity with ecological forecasts and forecast uncertainty. These results suggest that integrating ecological forecasting into undergraduate ecology curricula will enhance students’ abilities to engage and understand complex ecological concepts.  more » « less
Award ID(s):
1926050 1933016
NSF-PAR ID:
10384004
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Forecasting
Volume:
4
Issue:
3
ISSN:
2571-9394
Page Range / eLocation ID:
604 to 633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools, which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real‐world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision‐making, we developed a hands‐on teaching module within the Macrosystems Environmental Data‐Driven Inquiry and Exploration (EDDIE;MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage ecology students in introductory data science, ecological modeling, and forecasting concepts without needing advanced computational or programming skills. Pre‐ and post‐module assessment data from more than 250 undergraduate students enrolled in ecology, freshwater ecology, and zoology courses indicate that the module significantly increased students' ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision‐making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software‐based learning, which can increase students' ability to engage and understand complex ecological concepts.

     
    more » « less
  2. Ecologists are increasingly using macrosystems approaches to understand population, community, and ecosystem dynamics across interconnected spatial and temporal scales. Consequently, integrating macrosystems skills, including simulation modeling and sensor data analysis, into undergraduate and graduate curricula is needed to train future environmental biologists. Through the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration) program, we developed four teaching modules to introduce macrosystems ecology to ecology and biology students. Modules combine high-frequency sensor data from GLEON (Global Lake Ecological Observatory Network) and NEON (National Ecological Observatory Network) sites with ecosystem simulation models. Pre- and post-module assessments of 319 students across 24 classrooms indicate that hands-on, inquiry-based modules increase students’ understanding of macrosystems ecology, including complex processes that occur across multiple spatial and temporal scales. Following module use, students were more likely to correctly define macrosystems concepts, interpret complex data visualizations and apply macrosystems approaches in new contexts. In addition, there was an increase in student’s self-perceived proficiency and confidence using both long-term and high-frequency data; key macrosystems ecology techniques. Our results suggest that integrating short (1–3 h) macrosystems activities into ecology courses can improve students’ ability to interpret complex and non-linear ecological processes. In addition, our study serves as one of the first documented instances for directly incorporating concepts in macrosystems ecology into undergraduate and graduate ecology and biology curricula. 
    more » « less
  3. Abstract

    Simulation models are increasingly used by ecologists to study complex, ecosystem‐scale phenomena, but integrating ecosystem simulation modeling into ecology undergraduate and graduate curricula remains rare. Engaging ecology students with ecosystem simulation models may enable students to conduct hypothesis‐driven scientific inquiry while also promoting their use of systems thinking, but it remains unknown how using hands‐on modeling activities in the classroom affects student learning. Here, we developed short (3‐hr) teaching modules as part of the Macrosystems EDDIE (Environmental Data‐Driven Inquiry & Exploration) program that engage students with hands‐on ecosystem modeling in the R statistical environment. We embedded the modules into in‐person ecology courses at 17 colleges and universities and assessed student perceptions of their proficiency and confidence before and after working with models. Across all 277 undergraduate and graduate students who participated in our study, completing one Macrosystems EDDIE teaching module significantly increased students' self‐reported proficiency, confidence, and likely future use of simulation models, as well as their perceived knowledge of ecosystem simulation models. Further, students were significantly more likely to describe that an important benefit of ecosystem models was their “ease of use” after completing a module. Interestingly, students were significantly more likely to provide evidence of systems thinking in their assessment responses about the benefits of ecosystem models after completing a module, suggesting that these hands‐on ecosystem modeling activities may increase students’ awareness of how individual components interact to affect system‐level dynamics. Overall, Macrosystems EDDIE modules help students gain confidence in their ability to use ecosystem models and provide a useful method for ecology educators to introduce undergraduate and graduate students to ecosystem simulation modeling using in‐person, hybrid, or virtual modes of instruction.

     
    more » « less
  4. Abstract

    Conducting ecological research in a way that addresses complex, real‐world problems requires a diverse, interdisciplinary and quantitatively trained ecology and environmental science workforce. This begins with equitably training students in ecology, interdisciplinary science, and quantitative skills at the undergraduate level. Understanding the current undergraduate curriculum landscape in ecology and environmental sciences allows for targeted interventions to improve equitable educational opportunities. Ecological forecasting is a sub‐discipline of ecology with roots in interdisciplinary and quantitative science. We use ecological forecasting to show how ecology and environmental science undergraduate curriculum could be evaluated and ultimately restructured to address the needs of the 21stcentury workforce. To characterize the current state of ecological forecasting education, we compiled existing resources for teaching and learning ecological forecasting at three curriculum levels: online resources; US university courses on ecological forecasting; and US university courses on topics related to ecological forecasting. We found persistent patterns (1) in what topics are taught to US undergraduate students at each of the curriculum levels; and (2) in the accessibility of resources, in terms of course availability at higher education institutions in the United States. We developed and implemented programs to increase the accessibility and comprehensiveness of ecological forecasting undergraduate education, including initiatives to engage specifically with Native American undergraduates and online resources for learning quantitative concepts at the undergraduate level. Such steps enhance the capacity of ecological forecasting to be more inclusive to undergraduate students from diverse backgrounds and expose more students to quantitative training.

     
    more » « less
  5. Because of increased variability in populations, communities, and ecosystems due to land use and climate change, there is a pressing need to know the future state of ecological systems across space and time. Ecological forecasting is an emerging approach which provides an estimate of the future state of an ecological system with uncertainty, allowing society to preemptively prepare for fluctuations in important ecosystem services. However, forecasts must be effectively designed and communicated to those who need them to make decisions in order to realize their potential for protecting natural resources. In this module, students will explore real ecological forecast visualizations, identify ways to represent uncertainty, make management decisions using forecast visualizations, and learn decision support techniques. Lastly, students customize a forecast visualization for a specific stakeholder's decision needs. The overarching goal of this module is for students to understand how forecasts are connected to decision-making of stakeholders, or the managers, policy-makers, and other members of society who use forecasts to inform decision-making. The A-B-C structure of this module makes it flexible and adaptable to a range of student levels and course structures. This EDI data package contains instructional materials and the files necessary to teach the module. Readers are referred to the Zenodo data package (Woelmer et al. 2022; DOI: 10.5281/zenodo.7074674) for the R Shiny application code needed to run the module locally. 
    more » « less