skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Logic-enabled textiles
Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction.  more » « less
Award ID(s):
2138020 2144809
PAR ID:
10384163
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
35
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vibration is a widely used mode of haptic communication, as vibrotactile cues provide salient haptic notifications to users and are easily integrated into wearable or handheld devices. Fluidic textile-based devices offer an appealing platform for the incorporation of vibrotactile haptic feedback, as they can be integrated into clothing and other conforming and compliant wearables. Fluidically driven vibrotactile feedback has primarily relied on valves to regulate actuating frequencies in wearable devices. The mechanical bandwidth of such valves limits the range of frequencies that can be achieved, particularly in attempting to reach the higher frequencies realized with electromechanical vibration actuators ( > 100 Hz). In this paper, we introduce a soft vibrotactile wearable device, constructed entirely of textiles and capable of rendering vibration frequencies between 183 and 233 Hz with amplitudes ranging from 23 to 114 g . We describe our methods of design and fabrication and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanofluidic instability. Our design allows for controllable vibrotactile feedback that is comparable in frequency and greater in amplitude relative to state-of-the-art electromechanical actuators while offering the compliance and conformity of fully soft wearable devices. 
    more » « less
  2. Abstract

    The synthesis of soft matter intelligence with circuit‐driven logic has enabled a new class of robots that perform complex tasks or conform to specialized form factors in unique ways that cannot be realized through conventional designs. Translating this hybrid approach to fluidic systems, the present work addresses the need for sheet‐based circuit materials by leveraging the innate porosity of foam—a soft material—to develop pneumatic components that support digital logic, mixed‐signal control, and analog force sensing in wearables and soft robots. Analytical tools and experimental techniques developed in this work serve to elucidate compressible gas flow through porous sheets, and to inform the design of centimeter‐sized foam resistors with fluidic resistances on the order of 109 Pa s m−3. When embedded inside soft robots and wearables, these resistors facilitate diverse functionalities spanning both sensing and control domains, including digital logic using textile logic gates, digital‐to‐analog signal conversion using ladder networks, and analog sensing of forces up to 40 N via compression‐induced changes in resistance. By combining features of both circuit‐based and materials‐based approaches, foam‐enabled fluidic circuits serve as a useful paradigm for future hybrid robotic architectures that fully embody the sensing and computing capabilities of soft fluidic materials.

     
    more » « less
  3. Vibration is ubiquitous as a mode of haptic communication, and is used widely in handheld devices to convey events and notifications. The miniaturization of electromechanical actuators that are used to generate these vibrations has enabled designers to embed such actuators in wearable devices, conveying vibration at the wrist and other locations on the body. However, the rigid housings of these actuators mean that such wearables cannot be fully soft and compliant at the interface with the user. Fluidic textile-based wearables offer an alternative mechanism for haptic feedback in a fabric-like form factor. To our knowledge, fluidically driven vibrotactile feedback has not been demonstrated in a wearable device without the use of valves, which can only enable low-frequency vibration cues and detract from wearability due to their rigid structure. We introduce a soft vibrotactile wearable, made of textile and elastomer, capable of rendering high-frequency vibration. We describe our design and fabrication methods and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanical hysteresis. We demonstrate that the frequency and amplitude of vibration produced by our device can be varied based on changes in the input pressure, with 0.3 to 1.4 bar producing vibrations that range between 160 and 260 Hz at 13 to 38 g, the acceleration due to gravity. Our design allows for controllable vibrotactile feedback that is comparable in frequency and outperforms in amplitude relative to electromechanical actuators, yet has the compliance and conformity of fully soft wearable devices. 
    more » « less
  4. Abstract

    Soft robots have attracted attention for biomedical and consumer devices. However, most of these robots are pneumatically actuated, requiring a tether and thus limiting wearable applications that require multiple controlled actuators. By pairing liquid‐vapor phase change actuation with a textile‐based laminated manufacturing method, smart thermally actuating textiles (STATs) eliminate the need for a pneumatic tether. STATs are lightweight and unobtrusive for wearable applications and exploit a facile manufacturing approach that supports arbitrary customization of the form factor and easy creation of connected arrays of individual robotic modules. Through integrated sensing and heating elements, STATs demonstrate closed‐loop feedback that enables dynamic pressure control in the presence of environmental temperature fluctuations.

     
    more » « less
  5. Personal thermal management textile/wearable is an effective strategy to expand the indoor temperature setpoint range to reduce a building’s energy consumption. Usually, textiles/wearables that were engineered for controlling conduction, convection, radiation, or sweat evaporation have been developed separately. Here, we demonstrate a multimodal adaptive wearable with moisture-responsive flaps composed of a nylon/metal heterostructure, which can simultaneously regulate convection, sweat evaporation, and mid-infrared emission to accomplish large and rapid heat transfer tuning in response to human perspiration vapor. We show that the metal layer not only plays a crucial role in low-emissivity radiative heating but also enhances the bimorph actuation performance. The multimodal adaptive mechanism expands the thermal comfort zone by 30.7 and 20.7% more than traditional static textiles and single-modal adaptive wearables without any electricity and energy input, making it a promising design paradigm for personal heat management. 
    more » « less