skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fooling Constant-Depth Threshold Circuits (Extended Abstract)
We present new constructions of pseudorandom generators (PRGs) for two of the most widely studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth d∈N and n1+δ wires, where δ=2−O(d) , using seed length O(n1−δ) and with error 2−nδ . This tightly matches the best known lower bounds for this circuit class. As a consequence of our result, all the known hardness for LTF circuits has now effectively been translated into pseudorandomness. This brings the extensive effort in the last decade to construct PRGs and deterministic circuit-analysis algorithms for this class to the point where any subsequent improvement would yield breakthrough lower bounds. Our second contribution is a PRG for De Morgan formulas of size s whose seed length is s1/3+o(1)⋅polylog(1/ϵ) for error ϵ . In particular, our PRG can fool formulas of sub-cubic size s=n3−Ω(1) with an exponentially small error ϵ=exp(−nΩ(1)) . This significantly improves the inverse-polynomial error of the previous state-of-the-art for such formulas by Impagliazzo, Meka, and Zuckerman (FOCS 2012, JACM 2019), and again tightly matches the best currently-known lower bounds for this class. In both settings, a key ingredient in our constructions is a pseudorandom restriction procedure that has tiny failure probability, but simplifies the function to a non-natural “hybrid computational model” that combines several computational models.  more » « less
Award ID(s):
1947546
PAR ID:
10384268
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Symposium on Foundations of Computer Science
Page Range / eLocation ID:
104 to 115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer from a quantitative loss in parameters, and hence do not give nontrivial implications for models where we don’t know super-polynomial lower bounds but do know lower bounds of a fixed polynomial. We show that when such lower bounds are proved using random restrictions, we can construct PRGs which are essentially best possible without in turn improving the lower bounds. More specifically, say that a circuit family has shrinkage exponent Γ if a random restriction leaving a p fraction of variables unset shrinks the size of any circuit in the family by a factor of p Γ + o (1) . Our PRG uses a seed of length s 1/(Γ + 1) + o (1) to fool circuits in the family of size s . By using this generic construction, we get PRGs with polynomially small error for the following classes of circuits of size s and with the following seed lengths: (1) For de Morgan formulas, seed length s 1/3+ o (1) ; (2) For formulas over an arbitrary basis, seed length s 1/2+ o (1) ; (3) For read-once de Morgan formulas, seed length s .234... ; (4) For branching programs of size s , seed length s 1/2+ o (1) . The previous best PRGs known for these classes used seeds of length bigger than n /2 to output n bits, and worked only for size s = O ( n ) [8]. 
    more » « less
  2. One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer from a quantitative loss in parameters, and hence do not give nontrivial implications for models where we don't know super-polynomial lower bounds but do know lower bounds of a fixed polynomial. We show that when such lower bounds are proved using random restrictions, we can construct PRGs that are essentially best possible without in turn improving the lower bounds. More specifically, say that a circuit family has shrinkage exponent Gamma if a random restriction leaving a p fraction of variables unset shrinks the size of any circuit in the family by a factor of p^{Gamma + o(1)}. Our PRG uses a seed of length s^{1/(Gamma + 1) + o(1)} to fool circuits in the family of size s. By using this generic construction, we get PRGs with polynomially small error for the following classes of circuits of size s and with the following seed lengths: 1. For de Morgan formulas, seed length s^{1/3+o(1)}; 2. For formulas over an arbitrary basis, seed length s^{1/2+o(1)}; 3. For read-once de Morgan formulas, seed length s^{.234...}; 4. For branching programs of size s, seed length s^{1/2+o(1)}. The previous best PRGs known for these classes used seeds of length bigger than n/2 to output n bits, and worked only when the size s=O(n). 
    more » « less
  3. Saraf, Shubhangi (Ed.)
    There are only a few known general approaches for constructing explicit pseudorandom generators (PRGs). The "iterated restrictions" approach, pioneered by Ajtai and Wigderson [Ajtai and Wigderson, 1989], has provided PRGs with seed length polylog n or even Õ(log n) for several restricted models of computation. Can this approach ever achieve the optimal seed length of O(log n)? In this work, we answer this question in the affirmative. Using the iterated restrictions approach, we construct an explicit PRG for read-once depth-2 AC⁰[⊕] formulas with seed length O(log n) + Õ(log(1/ε)). In particular, we achieve optimal seed length O(log n) with near-optimal error ε = exp(-Ω̃(log n)). Even for constant error, the best prior PRG for this model (which includes read-once CNFs and read-once 𝔽₂-polynomials) has seed length Θ(log n ⋅ (log log n)²) [Chin Ho Lee, 2019]. A key step in the analysis of our PRG is a tail bound for subset-wise symmetric polynomials, a generalization of elementary symmetric polynomials. Like elementary symmetric polynomials, subset-wise symmetric polynomials provide a way to organize the expansion of ∏_{i=1}^m (1 + y_i). Elementary symmetric polynomials simply organize the terms by degree, i.e., they keep track of the number of variables participating in each monomial. Subset-wise symmetric polynomials keep track of more data: for a fixed partition of [m], they keep track of the number of variables from each subset participating in each monomial. Our tail bound extends prior work by Gopalan and Yehudayoff [Gopalan and Yehudayoff, 2014] on elementary symmetric polynomials. 
    more » « less
  4. Meka, Raghu (Ed.)
    We establish new correlation bounds and pseudorandom generators for a collection of computation models. These models are all natural generalization of structured low-degree polynomials that we did not have correlation bounds for before. In particular: - We construct a PRG for width-2 poly(n)-length branching programs which read d bits at a time with seed length 2^O(√{log n}) ⋅ d²log²(1/ε). This comes quadratically close to optimal dependence in d and log(1/ε). Improving the dependence on n would imply nontrivial PRGs for log n-degree 𝔽₂-polynomials. The previous PRG by Bogdanov, Dvir, Verbin, and Yehudayoff had an exponentially worse dependence on d with seed length of O(dlog n + d2^dlog(1/ε)). - We provide the first nontrivial (and nearly optimal) correlation bounds and PRGs against size-n^Ω(log n) AC⁰ circuits with either n^{.99} SYM gates (computing an arbitrary symmetric function) or n^{.49} THR gates (computing an arbitrary linear threshold function). This is a generalization of sparse 𝔽₂-polynomials, which can be simulated by an AC⁰ circuit with one parity gate at the top. Previous work of Servedio and Tan only handled n^{.49} SYM gates or n^{.24} THR gates, and previous work of Lovett and Srinivasan only handled polynomial-size circuits. - We give exponentially small correlation bounds against degree-n^O(1) 𝔽₂-polynomials which are set-multilinear over some arbitrary partition of the input into n^{1-O(1)} parts (noting that at n parts, we recover all low degree polynomials). This vastly generalizes correlation bounds against degree-d polynomials which are set-multilinear over a fixed partition into d blocks, which were established by Bhrushundi, Harsha, Hatami, Kopparty, and Kumar. The common technique behind all of these results is to fortify a hard function with the right type of extractor to obtain stronger correlation bounds for more general models of computation. Although this technique has been used in previous work, they rely on the model simplifying drastically under random restrictions. We view our results as a proof of concept that such fortification can be done even for classes that do not enjoy such behavior. 
    more » « less
  5. The Exponential-Time Hypothesis ( \(\mathtt {ETH} \) ) is a strengthening of the \(\mathcal {P} \ne \mathcal {NP} \) conjecture, stating that \(3\text{-}\mathtt {SAT} \) on n variables cannot be solved in (uniform) time 2 ϵ · n , for some ϵ > 0. In recent years, analogous hypotheses that are “exponentially-strong” forms of other classical complexity conjectures (such as \(\mathcal {NP}\nsubseteq \mathcal {BPP} \) or \(co\mathcal {NP}\nsubseteq \mathcal {NP} \) ) have also been introduced, and have become widely influential. In this work, we focus on the interaction of exponential-time hypotheses with the fundamental and closely-related questions of derandomization and circuit lower bounds . We show that even relatively-mild variants of exponential-time hypotheses have far-reaching implications to derandomization, circuit lower bounds, and the connections between the two. Specifically, we prove that: (1) The Randomized Exponential-Time Hypothesis ( \(\mathsf {rETH} \) ) implies that \(\mathcal {BPP} \) can be simulated on “average-case” in deterministic (nearly-)polynomial-time (i.e., in time \(2^{\tilde{O}(\log (n))}=n^{\mathrm{loglog}(n)^{O(1)}} \) ). The derandomization relies on a conditional construction of a pseudorandom generator with near-exponential stretch (i.e., with seed length \(\tilde{O}(\log (n)) \) ); this significantly improves the state-of-the-art in uniform “hardness-to-randomness” results, which previously only yielded pseudorandom generators with sub-exponential stretch from such hypotheses. (2) The Non-Deterministic Exponential-Time Hypothesis ( \(\mathsf {NETH} \) ) implies that derandomization of \(\mathcal {BPP} \) is completely equivalent to circuit lower bounds against \(\mathcal {E} \) , and in particular that pseudorandom generators are necessary for derandomization. In fact, we show that the foregoing equivalence follows from a very weak version of \(\mathsf {NETH} \) , and we also show that this very weak version is necessary to prove a slightly stronger conclusion that we deduce from it. Lastly, we show that disproving certain exponential-time hypotheses requires proving breakthrough circuit lower bounds. In particular, if \(\mathtt {CircuitSAT} \) for circuits over n bits of size poly( n ) can be solved by probabilistic algorithms in time 2 n /polylog( n ) , then \(\mathcal {BPE} \) does not have circuits of quasilinear size. 
    more » « less