skip to main content


Title: Quantum receiver enhanced by adaptive learning
Abstract

Quantum receivers aim to effectively navigate the vast quantum-state space to endow quantum information processing capabilities unmatched by classical receivers. To date, only a handful of quantum receivers have been constructed to tackle the problem of discriminating coherent states. Quantum receivers designed by analytical approaches, however, are incapable of effectively adapting to diverse environmental conditions, resulting in their quickly diminishing performance as the operational complexities increase. Here, we present a general architecture, dubbed the quantum receiver enhanced by adaptive learning, to adapt quantum receiver structures to diverse operational conditions. The adaptively learned quantum receiver is experimentally implemented in a hardware platform with record-high efficiency. Combining the architecture and the experimental advances, the error rate is reduced up to 40% over the standard quantum limit in two coherent-state encoding schemes.

 
more » « less
Award ID(s):
1828132 2144057
NSF-PAR ID:
10384586
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
11
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For space-based laser communications, when the mean photon number per received optical pulse is much smaller than one, there is a large gap between communications capacity achievable with a receiver that performs individual pulse-by-pulse detection, and the quantum-optimal “joint-detection receiver” that acts collectively on long codeword-blocks of modulated pulses; an effect often termed “superadditive capacity”. In this paper, we consider the simplest scenario where a large superadditive capacity is known: a pure-loss channel with a coherent-state binary phase-shift keyed (BPSK) modulation. The two BPSK states can be mapped conceptually to two non-orthogonal states of a qubit, described by an inner product that is a function of the mean photon number per pulse. Using this map, we derive an explicit construction of the quantum circuit of a joint-detection receiver based on a recent idea of “belief-propagation with quantum messages” (BPQM). We quantify its performance improvement over the Dolinar receiver that performs optimal pulse-by-pulse detection, which represents the best “classical” approach. We analyze the scheme rigorously and show that it achieves the quantum limit of minimum average error probability in discriminating 8 (BPSK) codewords of a length-5 binary linear code with a tree factor graph. Our result suggests that a BPQM receiver might attain the Holevo capacity of this BPSK-modulated pure-loss channel. Moreover, our receiver circuit provides an alternative proposal for a quantum supremacy experiment, targeted at a specific application that can potentially be implemented on a small, special-purpose, photonic quantum computer capable of performing cat-basis universal qubit logic.

     
    more » « less
  2. Theoretical models estimate visible light communication (VLC) data capacity to be of the order of Tera-bits-per-second (Tbps). However, practical limitations in receiver designs have limited state-of-the-art VLC prototypes to (multiple) orders of magnitude lower data rates. This paper explores a new architecture to realize ultra-high data rates in visible light communication systems by dramatically improving the Signal-to-Interference-Noise-Ratio (SINR) at the receiver. The key idea is to leverage the fast sampling rates of photodiode receivers and integrate a shutter mechanism that filters noise and interference thus creating a high-speed imaging receiver effect. Through adaptive selection of the exact receiver area over which the transmitted light is detected, the SINR can be dramatically increased yet not compromising the high sampling rate achievable using state-of-the-art photoreceptors. In addition to introducing the new hybrid architecture for high SINR reception, in this paper, we study the feasibility of noise and interference reduction through a proof-of-concept experimentation. 
    more » « less
  3. null (Ed.)
    Reconstruction of sparsely sampled seismic data is critical for maintaining the quality of seismic images when significant numbers of shots and receivers are missing.We present a reconstruction method in the shot-receiver-time (SRT) domain based on a residual U-Net machine learning architecture, for seismic data acquired in a sparse 2-D acquisition and name it SRT2D-ResU-Net. The SRT domain retains a high level of seismic signal connectivity, which is likely the main data feature that the reconstructing algorithms rely on. We develop an “in situ training and prediction” workflow by dividing the acquisition area into two nonoverlapping subareas: a training subarea for establishing the network model using regularly sampled data and a testing subarea for reconstructing the sparsely sampled data using the trained model. To establish a reference base for analyzing the changes in data features over the study area, and quantifying the reconstructed seismic data, we devise a baseline reference using a tiny portion of the field data. The baselines are properly spaced and excluded from the training and reconstruction processes. The results on a field marine data set show that the SRT2D-ResU-Net can effectively learn the features of seismic data in the training process, and the average correlation between the reconstructed missing traces and the true answers is over 85%. 
    more » « less
  4. Abstract

    We present a systematic study of quantum receivers and modulation methods enabling resource efficient quantum-enhanced optical communication. We introduce quantum-inspired modulation schemes that theoretically yield a better resource efficiency than legacy protocols. Experimentally, we demonstrate below the shot-noise limit symbol error rates forM ≤ 16 legacy and quantum-inspired communication alphabets using software-configurable optical communication time-resolving quantum receiver testbed. Further, we experimentally verify that our quantum-inspired modulation schemes boost the accuracy of practical quantum measurements and significantly optimize the combined use of energy and bandwidth for communication alphabets that are longer thanM = 4 symbols.

     
    more » « less
  5. null (Ed.)
    Abstract Background Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for understanding the relationships between aquatic organisms and their environment, but more information is needed to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or pitch. Results Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than 300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m) when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending (pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no significant effect when moving away from the transmitter. Conclusion Results suggested that much of the observed variation in detection efficiency is related to shielding of the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refinements, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments. 
    more » « less