We implement the cyclic quantum receiver based on the theoretical proposal of Roy Bondurant and demonstrate experimentally below the shot-noise limit (SNL) discrimination of quadrature phase-shift keying signals (PSK). We also experimentally test the receiver generalized for longer communication alphabet lengths and coherent frequency shift keying (CFSK) encoding. Using off-the-shelf components, we obtain state discrimination error rates that are 3 dB and 4.6 dB below the SNLs of ideal classical receivers for quadrature PSK and CFSK encodings, respectively. The receiver unconditionally surpasses the SNL for M=8 PSK and CFSK. This receiver can be used for the simple and robust practical implementation of quantum-enhanced optical communication.
Quantum receivers aim to effectively navigate the vast quantum-state space to endow quantum information processing capabilities unmatched by classical receivers. To date, only a handful of quantum receivers have been constructed to tackle the problem of discriminating coherent states. Quantum receivers designed by analytical approaches, however, are incapable of effectively adapting to diverse environmental conditions, resulting in their quickly diminishing performance as the operational complexities increase. Here, we present a general architecture, dubbed the quantum receiver enhanced by adaptive learning, to adapt quantum receiver structures to diverse operational conditions. The adaptively learned quantum receiver is experimentally implemented in a hardware platform with record-high efficiency. Combining the architecture and the experimental advances, the error rate is reduced up to 40% over the standard quantum limit in two coherent-state encoding schemes.
more » « less- NSF-PAR ID:
- 10384586
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Light: Science & Applications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2047-7538
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Theoretical models estimate visible light communication (VLC) data capacity to be of the order of Tera-bits-per-second (Tbps). However, practical limitations in receiver designs have limited state-of-the-art VLC prototypes to (multiple) orders of magnitude lower data rates. This paper explores a new architecture to realize ultra-high data rates in visible light communication systems by dramatically improving the Signal-to-Interference-Noise-Ratio (SINR) at the receiver. The key idea is to leverage the fast sampling rates of photodiode receivers and integrate a shutter mechanism that filters noise and interference thus creating a high-speed imaging receiver effect. Through adaptive selection of the exact receiver area over which the transmitted light is detected, the SINR can be dramatically increased yet not compromising the high sampling rate achievable using state-of-the-art photoreceptors. In addition to introducing the new hybrid architecture for high SINR reception, in this paper, we study the feasibility of noise and interference reduction through a proof-of-concept experimentation.more » « less
-
Abstract For space-based laser communications, when the mean photon number per received optical pulse is much smaller than one, there is a large gap between communications capacity achievable with a receiver that performs individual pulse-by-pulse detection, and the quantum-optimal “joint-detection receiver” that acts collectively on long codeword-blocks of modulated pulses; an effect often termed “superadditive capacity”. In this paper, we consider the simplest scenario where a large superadditive capacity is known: a pure-loss channel with a coherent-state binary phase-shift keyed (BPSK) modulation. The two BPSK states can be mapped conceptually to two non-orthogonal states of a qubit, described by an inner product that is a function of the mean photon number per pulse. Using this map, we derive an explicit construction of the quantum circuit of a joint-detection receiver based on a recent idea of “belief-propagation with quantum messages” (BPQM). We quantify its performance improvement over the Dolinar receiver that performs optimal pulse-by-pulse detection, which represents the best “classical” approach. We analyze the scheme rigorously and show that it achieves the quantum limit of minimum average error probability in discriminating 8 (BPSK) codewords of a length-5 binary linear code with a tree factor graph. Our result suggests that a BPQM receiver might attain the Holevo capacity of this BPSK-modulated pure-loss channel. Moreover, our receiver circuit provides an alternative proposal for a quantum supremacy experiment, targeted at a specific application that can potentially be implemented on a small, special-purpose, photonic quantum computer capable of performing cat-basis universal qubit logic.
-
Classical beamforming techniques rely on highly linear transmitters and receivers to allow phase-coherent combining at the transmitter and receiver. The transmitter uses eamforming to steer signal power towards the receiver, and the receiver uses beamforming to gather and coherently combine the signals from multiple receiver antennas. When the transmitters and receivers are instead constrained for power and cost reasons to be nonlinear one-bit devices, the potential advantages and performance metrics associated with beamforming are not as well understood. We define beamforming at the transmitter as a codebook design problem to maximize the minimum distance between codewords. We define beamforming at the receiver as the maximum likelihood detector of the transmitted codeword. We show that beamforming with one-bit transceivers is a constellation design problem, and that we can come within a few dB SNR of the capacity attained by linear transceivers.more » « less
-
A high resolution FMCW Lidar system based on a phase-diverse self-homodyne coherent receiver is demonstrated. Using the same linearly chirped waveform for both the transmitted lidar signal and the local oscillator, the self-homodyne coherent receiver performs frequency de-chirping in the photodiodes which significantly simplifies the task of signal processing, and the required receiver bandwidth can be much lower than the signal chirping bandwidth. While only amplitude modulation is required in the lidar transmitter, phase-diverse coherent receiver allows simultaneous detection of target range and velocity through the spectrum of the de-chirped complex waveform. Multi-target detection is also demonstrated experimentally.