skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models
Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seek to characterize the resulting, typically intractable, posterior distributions. We present a Probably Approximately Correct (PAC)-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified.  more » « less
Award ID(s):
1812197
PAR ID:
10385181
Author(s) / Creator(s):
; ;
Editor(s):
Alquier, Pierre
Date Published:
Journal Name:
Entropy
Volume:
23
Issue:
3
ISSN:
1099-4300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jasra, Ajay (Ed.)
    Variational Bayesian (VB) methods produce posterior inference in a time frame considerably smaller than traditional Markov Chain Monte Carlo approaches. Although the VB posterior is an approximation, it has been shown to produce good parameter estimates and predicted values when a rich classes of approximating distributions are considered. In this paper, we propose the use of recursive algorithms to update a sequence of VB posterior approximations in an online, time series setting, with the computation of each posterior update requiring only the data observed since the previous update. We show how importance sampling can be incorporated into online variational inference allowing the user to trade accuracy for a substantial increase in computational speed. The proposed methods and their properties are detailed in two separate simulation studies. Additionally, two empirical illustrations are provided, including one where a Dirichlet Process Mixture model with a novel posterior dependence structure is repeatedly updated in the context of predicting the future behaviour of vehicles on a stretch of the US Highway 101. 
    more » « less
  2. Bayesian models are established as one of the main successful paradigms for complex problems in machine learning. To handle intractable inference, research in this area has developed new approximation methods that are fast and effective. However, theoretical analysis of the performance of such approximations is not well developed. The paper furthers such analysis by providing bounds on the excess risk of variational inference algorithms and related regularized loss minimization algorithms for a large class of latent variable models with Gaussian latent variables. We strengthen previous results for variational algorithms by showing they are competitive with any point-estimate predictor. Unlike previous work, we also provide bounds on the risk of the \emph{Bayesian} predictor and not just the risk of the Gibbs predictor for the same approximate posterior. The bounds are applied in complex models including sparse Gaussian processes and correlated topic models. Theoretical results are complemented by identifying novel approximations to the Bayesian objective that attempt to minimize the risk directly. An empirical evaluation compares the variational and new algorithms shedding further light on their performance. 
    more » « less
  3. This paper establishes the asymptotic consistency of theloss‐calibrated variational Bayes(LCVB) method. LCVB is a method for approximately computing Bayesian posterior approximations in a “loss aware” manner. This methodology is also highly relevant in general data‐driven decision‐making contexts. Here, we establish the asymptotic consistency of both the loss‐ calibrated approximate posterior and the resulting decision rules. We also establish the asymptotic consistency of decision rules obtained from a “naive” two‐stage procedure that first computes a standard variational Bayes approximation and then uses this in the decision‐making procedure. 
    more » « less
  4. Nguyen, XuanLong (Ed.)
    We study the asymptotic consistency properties of α-Rényi approximate posteriors, a class of variational Bayesian methods that approximate an intractable Bayesian posterior with a member of a tractable family of distributions, the member chosen to minimize the α-Rényi divergence from the true posterior. Unique to our work is that we consider settings with α > 1, resulting in approximations that upperbound the log-likelihood, and consequently have wider spread than traditional variational approaches that minimize the Kullback-Liebler (KL) divergence from the posterior. Our primary result identifies sufficient conditions under which consistency holds, centering around the existence of a ‘good’ sequence of distributions in the approximating family that possesses, among other properties, the right rate of convergence to a limit distribution. We further characterize the good sequence by demonstrating that a sequence of distributions that converges too quickly cannot be a good sequence. We also extend our analysis to the setting where α equals one, corresponding to the minimizer of the reverse KL divergence, and to models with local latent variables. We also illustrate the existence of good sequence with a number of examples. Our results complement a growing body of work focused on the frequentist properties of variational Bayesian methods. 
    more » « less
  5. Mean-field Variational Bayes (MFVB) is an approximate Bayesian posterior inference technique that is increasingly popular due to its fast runtimes on large-scale data sets. However, even when MFVB provides accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Furthermore, prior robustness measures have remained undeveloped for MFVB. By deriving a simple formula for the effect of infinitesimal model perturbations on MFVB posterior means, we provide both improved covariance estimates and local robustness measures for MFVB, thus greatly expanding the practical usefulness of MFVB posterior approximations. The estimates for MFVB posterior covariances rely on a result from the classical Bayesian robustness literature that relates derivatives of posterior expectations to posterior covariances and includes the Laplace approximation as a special case. Our key condition is that the MFVB approximation provides good estimates of a select subset of posterior means---an assumption that has been shown to hold in many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast, providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order of magnitude faster than MCMC. 
    more » « less