skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical two-dimensional coherent spectroscopy of cold atoms
We report an experimental demonstration of optical two-dimensional coherent spectroscopy (2DCS) in cold atoms. The experiment integrates a collinear 2DCS setup with a magneto-optical trap (MOT), in which cold rubidium (Rb) atoms are prepared at a temperature of approximately 200 µK and a number density of 1010cm−3. With a sequence of femtosecond laser pulses, we first obtain one-dimensional second- and fourth-order nonlinear signals and then acquire both one-quantum and zero-quantum 2D spectra of cold Rb atoms. The capability of performing optical 2DCS in cold atoms is an important step toward optical 2DCS study of many-body physics in cold atoms and ultimately in atom arrays and trapped ions. Optical 2DCS in cold atoms/molecules can also be a new avenue to probe chemical reaction dynamics in cold molecules.  more » « less
Award ID(s):
2216824
PAR ID:
10385342
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
24
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 6452
Size(s):
Article No. 6452
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sawtooth Wave Adiabatic Passage (SWAP) laser cooling was recently demonstrated using a narrow-linewidth single-photon optical transition in atomic strontium and may prove useful for cooling other atoms and molecules. However, many atoms and molecules lack the appropriate narrow optical transition. Here we use such an atom,87Rb, to demonstrate that two-photon Raman transitions with arbitrarily-tunable linewidths can be used to achieve 1D SWAP cooling without significantly populating the intermediate excited state. Unlike SWAP cooling on a narrow transition, Raman SWAP cooling allows for a final 1D temperature well below the Doppler cooling limit (here, 25 times lower); and the effective excited state decay rate can be modified in time, presenting another degree of freedom during the cooling process. We also develop a generic model for Raman Landau–Zener transitions in the presence of small residual free-space scattering for future applications of SWAP cooling in other atoms or molecules. 
    more » « less
  2. Ultracold polyatomic molecules have potentially wide-ranging applications in quantum simulation and computation, particle physics, and quantum chemistry. For atoms and small molecules, direct laser cooling has proven to be a powerful tool for quantum science in the ultracold regime. However, the feasibility of laser-cooling larger, nonlinear polyatomic molecules has remained unknown because of their complex structure. We laser-cooled the symmetric top molecule calcium monomethoxide (CaOCH3), reducing the temperature of ~104molecules from 22 ± 1 millikelvin to 1.8 ± 0.7 millikelvin in one dimension and state-selectively cooling two nuclear spin isomers. These results demonstrate that the use of proper ro-vibronic transitions enables laser cooling of nonlinear molecules, thereby opening a path to efficient cooling of chiral molecules and, eventually, optical tweezer arrays of complex polyatomic species. 
    more » « less
  3. We report on progress towards a single atom, single photon source using a fiber connected optical chip. Quantum experiments with cold atoms are burdened by the complexity of the experimental apparatus. Using fiber connectorized optics and a grating MOT suitable for cooling Rb atoms we fabricate a pre-aligned device usable as a single photon source for quantum communication experiments. The device integrates a grating MOT with a single beam dipole trap produced by a fiber and GRIN lens combination. MOT atoms are loaded into the dipole trap and then used as a source of single photons which are collected by the same optical fiber. We will report on details of the fabrication of the optical chip, experimental characterization, and progress towards generating high purity single photons. 
    more » « less
  4. Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. In this study, we took the contrasting approach of prolonging the lifetime of an intermediate by preparing reactant molecules in their lowest rovibronic quantum state at ultralow temperatures, thereby markedly reducing the number of exit channels accessible upon their mutual collision. Using ionization spectroscopy and velocity-map imaging of a trapped gas of potassium-rubidium (KRb) molecules at a temperature of 500 nanokelvin, we directly observed reactants, intermediates, and products of the reaction40K87Rb +40K87Rb → K2Rb2* → K2+ Rb2. Beyond observation of a long-lived, energy-rich intermediate complex, this technique opens the door to further studies of quantum-state–resolved reaction dynamics in the ultracold regime. 
    more » « less
  5. Abstract Ultracold polar molecules combine a rich structure of long-lived internal states with access to controllable long-range anisotropic dipole–dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous differential light shifts. Here we demonstrate a rotationally magic optical trap for87Rb133Cs molecules that supports a Ramsey coherence time of 0.78(4) s in the absence of dipole–dipole interactions. This is estimated to extend to >1.4 s at the 95% confidence level using a single spin-echo pulse. In our trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation. 
    more » « less