skip to main content


Title: Optical two-dimensional coherent spectroscopy of cold atoms

We report an experimental demonstration of optical two-dimensional coherent spectroscopy (2DCS) in cold atoms. The experiment integrates a collinear 2DCS setup with a magneto-optical trap (MOT), in which cold rubidium (Rb) atoms are prepared at a temperature of approximately 200 µK and a number density of 1010cm−3. With a sequence of femtosecond laser pulses, we first obtain one-dimensional second- and fourth-order nonlinear signals and then acquire both one-quantum and zero-quantum 2D spectra of cold Rb atoms. The capability of performing optical 2DCS in cold atoms is an important step toward optical 2DCS study of many-body physics in cold atoms and ultimately in atom arrays and trapped ions. Optical 2DCS in cold atoms/molecules can also be a new avenue to probe chemical reaction dynamics in cold molecules.

 
more » « less
Award ID(s):
2216824
NSF-PAR ID:
10385342
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
24
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 6452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultracold polyatomic molecules have potentially wide-ranging applications in quantum simulation and computation, particle physics, and quantum chemistry. For atoms and small molecules, direct laser cooling has proven to be a powerful tool for quantum science in the ultracold regime. However, the feasibility of laser-cooling larger, nonlinear polyatomic molecules has remained unknown because of their complex structure. We laser-cooled the symmetric top molecule calcium monomethoxide (CaOCH3), reducing the temperature of ~104molecules from 22 ± 1 millikelvin to 1.8 ± 0.7 millikelvin in one dimension and state-selectively cooling two nuclear spin isomers. These results demonstrate that the use of proper ro-vibronic transitions enables laser cooling of nonlinear molecules, thereby opening a path to efficient cooling of chiral molecules and, eventually, optical tweezer arrays of complex polyatomic species.

     
    more » « less
  2. Abstract

    Sawtooth Wave Adiabatic Passage (SWAP) laser cooling was recently demonstrated using a narrow-linewidth single-photon optical transition in atomic strontium and may prove useful for cooling other atoms and molecules. However, many atoms and molecules lack the appropriate narrow optical transition. Here we use such an atom,87Rb, to demonstrate that two-photon Raman transitions with arbitrarily-tunable linewidths can be used to achieve 1D SWAP cooling without significantly populating the intermediate excited state. Unlike SWAP cooling on a narrow transition, Raman SWAP cooling allows for a final 1D temperature well below the Doppler cooling limit (here, 25 times lower); and the effective excited state decay rate can be modified in time, presenting another degree of freedom during the cooling process. We also develop a generic model for Raman Landau–Zener transitions in the presence of small residual free-space scattering for future applications of SWAP cooling in other atoms or molecules.

     
    more » « less
  3. The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1–100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms. 
    more » « less
  4. We report on progress towards a single atom, single photon source using a fiber connected optical chip. Quantum experiments with cold atoms are burdened by the complexity of the experimental apparatus. Using fiber connectorized optics and a grating MOT suitable for cooling Rb atoms we fabricate a pre-aligned device usable as a single photon source for quantum communication experiments. The device integrates a grating MOT with a single beam dipole trap produced by a fiber and GRIN lens combination. MOT atoms are loaded into the dipole trap and then used as a source of single photons which are collected by the same optical fiber. We will report on details of the fabrication of the optical chip, experimental characterization, and progress towards generating high purity single photons. 
    more » « less
  5. Abstract

    We report a measurement of the hyperfine-structure constants of the85Rb 4D3/2state using two-photon optical spectroscopy of the 5S1/24D3/2transition. The spectra are acquired by measuring the transmission of the low-power 795 nm lower-stage laser beam through a cold-atom sample as a function of laser frequency, with the frequency of the upper-stage, 1476 nm laser fixed. All 4 hyperfine components of the4D3/2state are well-resolved in the experimental data. The dominant systematic is the light shift from the 1476 nm laser, which is addressed by extrapolating line positions measured for a set of 1476 nm laser powers to zero laser power. The analysis of our experimental data yields both the magnetic-dipole and electric-quadrupole constants for the85Rb 4D3/2level, without using earlier hyperfine measurements of other atomic levels. The respective results,A=7.419(35) MHz andB=4.19(19) MHz, are discussed in context with previous works. Our investigation may be useful for optical atomic clocks for precision metrology and emerging atom-based quantum technologies, all-infrared excitation of Rb Rydberg levels, and molecular physics.

     
    more » « less