skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The power of forecasts to advance ecological theory
1. Ecological forecasting provides a powerful set of methods for predicting short- and long-term change in living systems. Forecasts are now widely produced, enabling proactive management for many applied ecological problems. However, despite numerous calls for an increased emphasis on prediction in ecology, the potential for forecasting to accelerate ecological theory development remains underrealized. 2. Here, we provide a conceptual framework describing how ecological forecasts can energize and advance ecological theory. We emphasize the many opportunities for future progress in this area through increased forecast development, comparison and synthesis. 3. Our framework describes how a forecasting approach can shed new light on existing ecological theories while also allowing researchers to address novel questions. Through rigorous and repeated testing of hypotheses, forecasting can help to refine theories and understand their generality across systems. Meanwhile, synthesizing across forecasts allows for the development of novel theory about the relative predictability of ecological variables across forecast horizons and scales. 4. We envision a future where forecasting is integrated as part of the toolset used in fundamental ecology. By outlining the relevance of forecasting methods to ecological theory, we aim to decrease barriers to entry and broaden the community of researchers using forecasting for fundamental ecological insight.  more » « less
Award ID(s):
1926388 2017831 1638577
PAR ID:
10385429
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
00
ISSN:
2041-210X
Page Range / eLocation ID:
1-11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools, which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real‐world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision‐making, we developed a hands‐on teaching module within the Macrosystems Environmental Data‐Driven Inquiry and Exploration (EDDIE;MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage ecology students in introductory data science, ecological modeling, and forecasting concepts without needing advanced computational or programming skills. Pre‐ and post‐module assessment data from more than 250 undergraduate students enrolled in ecology, freshwater ecology, and zoology courses indicate that the module significantly increased students' ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision‐making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software‐based learning, which can increase students' ability to engage and understand complex ecological concepts. 
    more » « less
  2. Ecological forecasting is an emerging approach to estimate the future state of an ecological system with uncertainty, allowing society to better manage ecosystem services. Ecological forecasting is a core mission of the U.S. National Ecological Observatory Network (NEON) and several federal agencies, yet, to date, forecasting training has focused on graduate students, representing a gap in undergraduate ecology curricula. In response, we developed a teaching module for the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program to introduce ecological forecasting to undergraduate students through an interactive online tool built with R Shiny. To date, we have assessed this module, “Introduction to Ecological Forecasting,” at ten universities and two conference workshops with both undergraduate and graduate students (N = 136 total) and found that the module significantly increased undergraduate students’ ability to correctly define ecological forecasting terms and identify steps in the ecological forecasting cycle. Undergraduate and graduate students who completed the module showed increased familiarity with ecological forecasts and forecast uncertainty. These results suggest that integrating ecological forecasting into undergraduate ecology curricula will enhance students’ abilities to engage and understand complex ecological concepts. 
    more » « less
  3. Near‐term, iterative ecological forecasts can be used to help understand and proactively manage ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other ecosystems worldwide, likely motivated by the pressing need to conserve these essential and threatened ecosystems and increasing the availability of high‐frequency data. Forecasters have implemented many different modeling approaches to forecast freshwater variables, which have demonstrated promise at individual sites. However, a comprehensive analysis of the performance of varying forecast models across multiple sites is needed to understand broader controls on forecast performance. Forecasting challenges (i.e., community‐scale efforts to generate forecasts while also developing shared software, training materials, and best practices) present a useful platform for bridging this gap to evaluate how a range of modeling methods perform across axes of space, time, and ecological systems. Here, we analyzed forecasts from the aquatics theme of the National Ecological Observatory Network (NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 probabilistic forecasts of water temperature and dissolved oxygen concentration for 1–30 days ahead across seven NEON‐monitored lakes were submitted in 2023. We assessed how forecast performance varied among models with different structures, covariates, and sources of uncertainty relative to baseline null models. A similar proportion of forecast models were skillful across both variables (34%–40%), although more individual models outperformed the baseline models in forecasting water temperature (10 models out of 29) than dissolved oxygen (6 models out of 15). These top performing models came from a range of classes and structures. For water temperature, we found that forecast skill degraded with increases in forecast horizons, process‐based models, and models that included air temperature as a covariate generally exhibited the highest forecast performance, and that the most skillful forecasts often accounted for more sources of uncertainty than the lower performing models. The most skillful forecasts were for sites where observations were most divergent from historical conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting Challenge provides an exciting opportunity for a model intercomparison to learn about the relative strengths of a diverse suite of models and advance our understanding of freshwater ecosystem predictability. 
    more » « less
  4. Abstract Ecosystems around the globe are experiencing changes in both the magnitude and fluctuations of environmental conditions due to land use and climate change. In response, ecologists are increasingly using near‐term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near‐term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost‐prohibitive or impossible for forecasting ecological variables that lack high‐frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1‐ to 35‐day‐ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1‐day‐ahead forecast root mean square error (RMSE) of 0.81°C, mean 7‐day RMSE of 1.15°C, and mean 35‐day RMSE of 1.94°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1‐ to 7‐day‐ahead horizons, but weekly data assimilation resulted in the most skillful forecasts at 8‐ to 35‐day‐ahead horizons. Within a year, forecasts with weekly data assimilation consistently outperformed forecasts with daily data assimilation after the 8‐day forecast horizon during mixed spring/autumn periods and 5‐ to 14‐day‐ahead horizons during the summer‐stratified period, depending on depth. Our results suggest that lower frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high‐frequency sensor data. 
    more » « less
  5. Synthetic ensemble forecasts are an important tool for testing the robustness of forecast‐informed reservoir operations (FIRO). These forecasts are statistically generated to mimic the skill of hindcasts derived from operational ensemble forecasting systems, but they can be created for time periods when hindcast data are unavailable, allowing for a more comprehensive evaluation of FIRO policies. Nevertheless, it remains unclear how to determine whether a candidate synthetic ensemble forecasting approach is sufficiently representative of its real‐world counterpart to support FIRO policy evaluation. This highlights a need for formalfit‐for‐purposevalidation frameworks to advance synthetic forecasting as a generalizable risk analysis strategy. We address this research gap by first introducing a novel operations‐based validation framework, where reservoir storage and release simulations under a FIRO policy are compared when forced with a single ensemble hindcast and many different synthetic ensembles. We evaluate the suitability of synthetic forecasts based on formal probabilistic verification of the operational outcomes. Second, we develop a new synthetic ensemble forecasting algorithm and compare it to a previous algorithm using this validation framework across a set of stylized, hydrologically diverse reservoir systems in California. Results reveal clear differences in operational suitability, with the new method consistently outperforming the previous one. These findings demonstrate the promise of the newer synthetic forecasting approach as a generalizable tool for FIRO policy evaluation and robustness testing. They also underscore the value of the proposed validation framework in benchmarking and guiding future improvements in synthetic forecast development. 
    more » « less