Dynamic rupture simulations generate synthetic waveforms that account for nonlinear source and path complexity. Here, we analyze millions of spatially dense waveforms from 3D dynamic rupture simulations in a novel way to illuminate the spectral fingerprints of earthquake physics. We define a Brune-type equivalent near-field corner frequency (fc) to analyze the spatial variability of ground-motion spectra and unravel their link to source complexity. We first investigate a simple 3D strike-slip setup, including an asperity and a barrier, and illustrate basic relations between source properties and fc variations. Next, we analyze >13,000,000 synthetic near-field strong-motion waveforms generated in three high-resolution dynamic rupture simulations of real earthquakes, the 2019 Mw 7.1 Ridgecrest mainshock, the Mw 6.4 Searles Valley foreshock, and the 1992 Mw 7.3 Landers earthquake. All scenarios consider 3D fault geometries, topography, off-fault plasticity, viscoelastic attenuation, and 3D velocity structure and resolve frequencies up to 1–2 Hz. Our analysis reveals pronounced and localized patterns of elevated fc, specifically in the vertical components. We validate such fc variability with observed near-fault spectra. Using isochrone analysis, we identify the complex dynamic mechanisms that explain rays of elevated fc and cause unexpectedly impulsive, localized, vertical ground motions. Although the high vertical frequencies are also associated with path effects, rupture directivity, and coalescence of multiple rupture fronts, we show that they are dominantly caused by rake-rotated surface-breaking rupture fronts that decelerate due to fault heterogeneities or geometric complexity. Our findings highlight the potential of spatially dense ground-motion observations to further our understanding of earthquake physics directly from near-field data. Observed near-field fc variability may inform on directivity, surface rupture, and slip segmentation. Physics-based models can identify “what to look for,” for example, in the potentially vast amount of near-field large array or distributed acoustic sensing data.
Advances in physics‐based earthquake simulations, utilizing high‐performance computing, have been exploited to better understand the generation and characteristics of the high‐frequency seismic wavefield. However, direct comparison to ground motion observations of a specific earthquake is challenging. We here propose a new approach to simulate data‐fused broadband ground motion synthetics using 3D dynamic rupture modeling of the 2016
- PAR ID:
- 10385587
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 22
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ.
-
Abstract Spontaneous rupture simulations along geometrically rough faults have been shown to produce realistic far‐field spectra and comparable fits with ground motion metrics such as spectral accelerations and peak motions from Ground Motion Prediction Equations (GMPEs), but they are too computationally demanding for use with physics‐based probabilistic seismic hazard analysis efforts. Here, we present our implementation of a kinematic rupture generator that matches the characteristics of, at least in a statistical sense, rough‐fault spontaneous rupture models. To this end, we analyze ~100 dynamic rupture simulations on strike‐slip faults with
M w ranging from 6.4 to 7.2. We find that our dynamic simulations follow empirical scaling relationships for strike‐slip events and provide source spectra comparable to a source model with decay. To define our kinematic source model, we use a regularized Yoffe function parameterized in terms of slip, peak‐time, rise‐time, and rupture initiation time. These parameters are defined through empirical relationships with random fields whose one‐ and two‐point statistics are derived from the dynamic rupture simulations. Our rupture generator reproduces Next Generation Attenuation (NGA) West2 GMPE medians and intraevent standard deviations of spectral accelerations with periods as short as 0.2 s for ensembles of ground motion simulations. Our rupture generator produces kinematic source models forω −2M 6.4–7.2 strike‐slip scenarios that can be used in broadband physics‐based probabilistic seismic hazard efforts or to supplement data in areas of limited observations for the development of future GMPEs. -
ABSTRACT The ML 5.8 earthquake that jolted Gyeongju in southeastern Korea in 2016 was the country’s largest inland event since instrumental seismic monitoring began in 1978. We developed dynamic rupture models of the Gyeongju event constrained by near-source ground-motion data using full 3D spontaneous dynamic rupture modeling with the slip-weakening friction law. Based on our results, we propose two simple dynamic rupture models with constant strength excess (SE) and slip-weakening distance (Dc) that produce near-source ground-motion waveforms compatible with recorded ones in the low-frequency band. Both dynamic models exhibit relatively large stress-drop values, consistent with previous estimates constrained by source spectrum analyses. The fracture energy estimates were also larger than those predicted by a scaling relationship with the seismic moment. The dynamic features constrained in this study by spontaneous rupture modeling and waveform comparison may help understand the source and ground-motion characteristics of future large events in southeastern Korea and thus the seismic hazard of the region.
-
The destructive 2023 moment magnitude ( M w ) 7.8-7.7 earthquake doublet ruptured multiple segments of the East Anatolian Fault system in Turkey. We integrate multi-scale seismic and space-geodetic observations with multi-fault kinematic inversions and dynamic rupture modeling to unravel the events’ complex rupture history and stress-mediated fault interactions. Our analysis reveals three sub-shear slip episodes during the initial M w 7.8 earthquake with delayed rupture initiation to the southwest. The M w 7.7 event occurred 9 hours later with larger slip and supershear rupture on its western branch. Mechanically consistent dynamic models accounting for fault interactions can explain the unexpected rupture paths, and require a heterogeneous background stress. Our results highlight the importance of combining near- and far-field observations with data-driven and physics-based models for seismic hazard assessment.more » « less