Abstract Dynamic rupture simulations generate synthetic waveforms that account for nonlinear source and path complexity. Here, we analyze millions of spatially dense waveforms from 3D dynamic rupture simulations in a novel way to illuminate the spectral fingerprints of earthquake physics. We define a Brune-type equivalent near-field corner frequency (fc) to analyze the spatial variability of ground-motion spectra and unravel their link to source complexity. We first investigate a simple 3D strike-slip setup, including an asperity and a barrier, and illustrate basic relations between source properties and fc variations. Next, we analyze >13,000,000 synthetic near-field strong-motion waveforms generated in three high-resolution dynamic rupture simulations of real earthquakes, the 2019 Mw 7.1 Ridgecrest mainshock, the Mw 6.4 Searles Valley foreshock, and the 1992 Mw 7.3 Landers earthquake. All scenarios consider 3D fault geometries, topography, off-fault plasticity, viscoelastic attenuation, and 3D velocity structure and resolve frequencies up to 1–2 Hz. Our analysis reveals pronounced and localized patterns of elevated fc, specifically in the vertical components. We validate such fc variability with observed near-fault spectra. Using isochrone analysis, we identify the complex dynamic mechanisms that explain rays of elevated fc and cause unexpectedly impulsive, localized, vertical ground motions. Although the high vertical frequencies are also associated with path effects, rupture directivity, and coalescence of multiple rupture fronts, we show that they are dominantly caused by rake-rotated surface-breaking rupture fronts that decelerate due to fault heterogeneities or geometric complexity. Our findings highlight the potential of spatially dense ground-motion observations to further our understanding of earthquake physics directly from near-field data. Observed near-field fc variability may inform on directivity, surface rupture, and slip segmentation. Physics-based models can identify “what to look for,” for example, in the potentially vast amount of near-field large array or distributed acoustic sensing data.
more »
« less
Broadband Dynamic Rupture Modeling With Fractal Fault Roughness, Frictional Heterogeneity, Viscoelasticity and Topography: The 2016 M w 6.2 Amatrice, Italy Earthquake
Abstract Advances in physics‐based earthquake simulations, utilizing high‐performance computing, have been exploited to better understand the generation and characteristics of the high‐frequency seismic wavefield. However, direct comparison to ground motion observations of a specific earthquake is challenging. We here propose a new approach to simulate data‐fused broadband ground motion synthetics using 3D dynamic rupture modeling of the 2016Mw6.2 Amatrice, Italy earthquake. We augment a smooth, best‐fitting model from Bayesian dynamic rupture source inversion of strong‐motion data (<1 Hz) with fractal fault roughness, frictional heterogeneities, viscoelastic attenuation, and topography. The required consistency to match long periods allows us to quantify the role of small‐scale dynamic source heterogeneities, such as the 3D roughness drag, from observational broadband seismic waveforms. We demonstrate that 3D data‐constrained fully dynamic rupture synthetics show good agreement with various observed ground‐motion metrics up to ∼5 Hz and are an important avenue toward non‐ergodic, physics‐based seismic hazard assessment.
more »
« less
- PAR ID:
- 10385587
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 22
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ.more » « less
-
ABSTRACT CyberShake is a high-performance computing workflow for kinematic fault-rupture and earthquake ground-motion simulation developed by the Statewide California Earthquake Center to facilitate physics-based probabilistic seismic hazard assessment (PSHA). CyberShake exploits seismic reciprocity for wave propagation by computing strain green tensors along fault planes, which in turn are convolved with rupture models to generate surface seismograms. Combined with a faultwide hypocentral variation of each simulated rupture, this procedure allows for generating ground-motion synthetics that account for realistic source variability. This study validates the platform’s kinematic modeling of physics-based seismic wave propagation simulations in Southwest Iceland as the first step toward migrating CyberShake from its original study region in California. Specifically, we have implemented CyberShake workflows to model 2103 fault ruptures and simulate the corresponding two horizontal components of ground-motion velocity on a 5 km grid of 625 stations in Southwest Iceland. A 500-yr-long earthquake rupture forecast consisting of 223 hypothetical finite-fault sources of Mw 5–7 was generated using a physics-based model of the bookshelf fault system of the Southwest Iceland transform zone. For each station, every reciprocal simulation uses 0–1 Hz Gaussian point sources polarized along two horizontal grid directions. Comparison of the results in the form of rotation-invariant synthetic pseudoacceleration spectral response values at 3, 4, and 5 s periods are in good agreement with the Icelandic strong motion data set and a suite of empirical Bayesian ground-motion prediction equations (GMPEs). The vast majority of the physics-based simulations fall within one standard deviation of the mean GMPE predictions, previously estimated for the area. At large magnitudes for which no data exist in Iceland, the synthetic data set may play an important role in constraining GMPEs for future applications. Our results comprise the first step toward comprehensive and physics-based PSHA for Southwest Iceland.more » « less
-
Abstract The nonlinear mechanical responses of rocks and soils to seismic waves play an important role in earthquake physics, influencing ground motion from source to site. Continuous geophysical monitoring, such as ambient noise interferometry, has revealed co‐seismic wave speed reductions extending tens of kilometers from earthquake sources. However, the mechanisms governing these changes remain challenging to model, especially at regional scales. Using a nonlinear damage model constrained by laboratory experiments, we develop and apply an open‐source 3D discontinuous Galerkin method to simulate regional co‐seismic wave speed changes during the 2015 Mw7.8 Gorkha earthquake. We find pronounced spatial variations of co‐seismic wave speed reduction, ranging from <0.01% to >50%, particularly close to the source and within the Kathmandu Basin, while disagreement with observations remains. The most significant reduction occurs within the sedimentary basin and varies with basin depths, whereas wave speed reductions correlate with the fault slip distribution near the source. By comparing ground motions from simulations with elastic, viscoelastic, elastoplastic, and nonlinear damage rheologies, we demonstrate that the nonlinear damage model effectively captures low‐frequency ground motion amplification due to strain‐dependent wave speed reductions in soft sediments. We verify the accuracy of our approach through comparisons with analytical solutions and assess its scalability on high‐performance computing systems. The model shows near‐linear strong and weak scaling up to 2,048 nodes, enabling efficient large‐scale simulations. Our findings provide a physics‐based framework to quantify nonlinear earthquake effects and emphasize the importance of damage‐induced wave speed variations for seismic hazard assessment and ground motion predictions.more » « less
-
ABSTRACT The ML 5.8 earthquake that jolted Gyeongju in southeastern Korea in 2016 was the country’s largest inland event since instrumental seismic monitoring began in 1978. We developed dynamic rupture models of the Gyeongju event constrained by near-source ground-motion data using full 3D spontaneous dynamic rupture modeling with the slip-weakening friction law. Based on our results, we propose two simple dynamic rupture models with constant strength excess (SE) and slip-weakening distance (Dc) that produce near-source ground-motion waveforms compatible with recorded ones in the low-frequency band. Both dynamic models exhibit relatively large stress-drop values, consistent with previous estimates constrained by source spectrum analyses. The fracture energy estimates were also larger than those predicted by a scaling relationship with the seismic moment. The dynamic features constrained in this study by spontaneous rupture modeling and waveform comparison may help understand the source and ground-motion characteristics of future large events in southeastern Korea and thus the seismic hazard of the region.more » « less
An official website of the United States government
