skip to main content


Title: Memristive Field‐Programmable Analog Arrays for Analog Computing
Abstract

The increasing interests in analog computing nowadays call for multipurpose analog computing platforms with reconfigurability. The advancement of analog computing, enabled by novel electronic elements like memristors, has shown its potential to sustain the exponential growth of computing demand in the new era of analog data deluge. Here, a platform of a memristive field‐programmable analog array (memFPAA) is experimentally demonstrated with memristive devices serving as a variety of core analog elements and CMOS components as peripheral circuits. The memFPAA is reconfigured to implement a first‐order band pass filter, an audio equalizer, and an acoustic mixed frequency classifier, as application examples. The memFPAA, featured with programmable analog memristors, memristive routing networks, and memristive vector‐matrix multipliers, opens opportunities for fast prototyping analog designs as well as efficient analog applications in signal processing and neuromorphic computing.

 
more » « less
Award ID(s):
2023752
NSF-PAR ID:
10385661
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
37
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The superior density of passive analog-grade memristive crossbar circuits enables storing large neural network models directly on specialized neuromorphic chips to avoid costly off-chip communication. To ensure efficient use of such circuits in neuromorphic systems, memristor variations must be substantially lower than those of active memory devices. Here we report a 64 × 64 passive crossbar circuit with ~99% functional nonvolatile metal-oxide memristors. The fabrication technology is based on a foundry-compatible process with etch-down patterning and a low-temperature budget. The achieved <26% coefficient of variance in memristor switching voltages is sufficient for programming a 4K-pixel gray-scale pattern with a <4% relative tuning error on average. Analog properties are also successfully verified via experimental demonstration of a 64 × 10 vector-by-matrix multiplication with an average 1% relative conductance import accuracy to model the MNIST image classification by ex-situ trained single-layer perceptron, and modeling of a large-scale multilayer perceptron classifier based on more advanced conductance tuning algorithm.

     
    more » « less
  2. Abstract

    Recent studies of resistive switching devices with hexagonal boron nitride (h-BN) as the switching layer have shown the potential of two-dimensional (2D) materials for memory and neuromorphic computing applications. The use of 2D materials allows scaling the resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. These characteristics are of interest for the implementation of neuromorphic computing and machine learning hardware based on memristor crossbars. However, existing demonstrations of h-BN memristors focus on single isolated device switching properties and lack attention to fundamental machine learning functions. This paper demonstrates the hardware implementation of dot product operations, a basic analog function ubiquitous in machine learning, using h-BN memristor arrays. Moreover, we demonstrate the hardware implementation of a linear regression algorithm on h-BN memristor arrays.

     
    more » « less
  3. Abstract

    Memristors have attracted increasing attention due to their tremendous potential to accelerate data-centric computing systems. The dynamic reconfiguration of memristive devices in response to external electrical stimuli can provide highly desirable novel functionalities for computing applications when compared with conventional complementary-metal–oxide–semiconductor (CMOS)-based devices. Those most intensively studied and extensively reviewed memristors in the literature so far have been filamentary type memristors, which typically exhibit a relatively large variability from device to device and from switching cycle to cycle. On the other hand, filament-free switching memristors have shown a better uniformity and attractive dynamical properties, which can enable a variety of new computing paradigms but have rarely been reviewed. In this article, a wide range of filament-free switching memristors and their corresponding computing applications are reviewed. Various junction structures, switching properties, and switching principles of filament-free memristors are surveyed and discussed. Furthermore, we introduce recent advances in different computing schemes and their demonstrations based on non-filamentary memristors. This Review aims to present valuable insights and guidelines regarding the key computational primitives and implementations enabled by these filament-free switching memristors.

     
    more » « less
  4. Abstract

    Non‐von‐Neumann computing using neuromorphic systems based on two‐terminal resistive nonvolatile memory elements has emerged as a promising approach, but its full potential has not been realized due to the lack of materials and devices with the appropriate attributes. Unlike memristors, which require large write currents to drive phase transformations or filament growth, electrochemical random access memory (ECRAM) decouples the “write” and “read” operations using a “gate” electrode to tune the conductance state through charge‐transfer reactions, and every electron transferred through the external circuit in ECRAM corresponds to the migration of ≈1 ion used to store analogue information. Like static dopants in traditional semiconductors, electrochemically inserted ions modulate the conductivity by locally perturbing a host's electronic structure; however, ECRAM does so in a dynamic and reversible manner. The resulting change in conductance can span orders of magnitude, from gradual increments needed for analog elements, to large, abrupt changes for dynamically reconfigurable adaptive architectures. In this in‐depth perspective, the history of ECRAM, the recent progress in devices spanning organic, inorganic, and 2D materials, circuits, architectures, the rich portfolio of challenging, fundamental questions, and how ECRAM can be harnessed to realize a new paradigm for low‐power neuromorphic computing are discussed.

     
    more » « less
  5. Abstract

    Different from nonvolatile memory applications, neuromorphic computing applications utilize not only the static conductance states but also the switching dynamics for computing, which calls for compact dynamical models of memristive devices. In this work, a generalized model to simulate diffusive and drift memristors with the same set of equations is presented, which have been used to reproduce experimental results faithfully. The diffusive memristor is chosen as the basis for the generalized model because it possesses complex dynamical properties that are difficult to model efficiently. A data set from statistical measurements on SiO2:Ag diffusive memristors is collected to verify the validity of the general model. As an application example, spike‐timing‐dependent plasticity is demonstrated with an artificial synapse consisting of a diffusive memristor and a drift memristor, both modeled with this comprehensive compact model.

     
    more » « less